skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating Nature: Induced Atomic Order in Equiatomic FeNi
Abstract The production of locally atomically ordered FeNi (known by its meteoric mineral name, tetrataenite) is confirmed in bulk samples by simultaneous conversion X‐ray and backscattered γ‐ray57Fe Mössbauer spectroscopy. Up to 22 volume percent of the tetragonal tetrataenite phase is quantified in samples thermally treated under simultaneous magnetic‐ and stress‐field conditions for a period of 6 weeks, with the remainder identified as the cubic FeNi alloy. In contrast, all precursor samples consist only of the cubic FeNi alloy. Data from the processed alloys are validated using Mössbauer parameters derived from natural meteoritic tetrataenite. The meteoritic tetrataenite exhibits a substantially higher degree of atomic order than do the processed samples, consistent with their low uniaxial magnetocrystalline anisotropy energy of ≈1 kJ·m−3. These results suggest that targeted refinements to the processing conditions of FeNi will foster greater atomic order and increased magnetocrystalline anisotropy, leading to an enhanced magnetic energy product. These outcomes also suggest that deductions concerning paleomagnetic conditions of the solar system, as derived from meteoritic data, may warrant re‐examination and re‐evaluation. Additionally, this work strengthens the argument that tetrataenite may indeed become a member of the advanced permanent magnet portfolio, helping to meet rapidly escalating green energy imperatives.  more » « less
Award ID(s):
2118164
PAR ID:
10480016
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
7
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The magnetocrystalline anisotropy energy of atomically ordered L10 FeNi (the meteoritic mineral tetrataenite) is studied within a first-principles electronic structure framework. Two compositions are examined: equiatomic Fe0.5Ni0.5 and an Fe-rich composition, Fe0.56Ni0.44. It is confirmed that, for the single crystals modeled in this work, the leading-order anisotropy coefficient K1 dominates the higher-order coefficients K2 and K3. To enable comparison with experiment, the effects of both imperfect atomic long-range order and finite temperature are included. While our computational results initially appear to undershoot the measured experimental values for this system, careful scrutiny of the original analysis due to Néel et al. [J. Appl. Phys. 35, 873 (1964)] suggests that our computed value of K1 is, in fact, consistent with experimental values, and that the noted discrepancy has its origins in the nanoscale polycrystalline, multivariant nature of experimental samples, that yields much larger values of K2 and K3 than expected a priori. These results provide fresh insight into the existing discrepancies in the literature regarding the value of tetrataenite’s uniaxial magnetocrystalline anisotropy in both natural and synthetic samples. 
    more » « less
  2. Abstract We describe an integrated modelling approach to accelerate the search for novel, single-phase, multicomponent materials with high magnetocrystalline anisotropy (MCA). For a given system we predict the nature of atomic ordering, its dependence on the magnetic state, and then proceed to describe the consequent MCA, magnetisation, and magnetic critical temperature (Curie temperature). Crucially, within our modelling framework, the same ab initio description of a material’s electronic structure determines all aspects. We demonstrate this holistic method by studying the effects of alloying additions in FeNi, examining systems with the general stoichiometries Fe4Ni3Xand Fe3Ni4X, for additives includingX = Pt, Pd, Al, and Co. The atomic ordering behaviour predicted on adding these elements, fundamental for determining a material’s MCA, is rich and varied. Equiatomic FeNi has been reported to require ferromagnetic order to establish the tetragonal L10order suited for significant MCA. Our results show that when alloying additions are included in this material, annealing in an applied magnetic field and/or below a material’s Curie temperature may also promote tetragonal order, along with an appreciable effect on the predicted hard magnetic properties. 
    more » « less
  3. Abstract A unique method is presented for the acquisition and analysis of57Fe backscatter Mössbauer spectra with simultaneous detection of the resonant 14.4 keVγ-rays and the characteristic 6.4 keV x-rays, using a custom-built multi-parameter analyser constructed on the basis of commercial analogue to digital converters and high-speed digital latches. The system allows for the simultaneous registration of Doppler-modulation velocities and photon energies, with up to 4096 and 8192 digital channels respectively. This arrangement is in contrast to most related systems, which detect at a single narrow energy window per detector. Samples of arbitrary atomic structure, morphology and surface topography can be studied without altering the setup or the analysis procedure, provided that the samples are at least micrometre sized. The hardware and software that are used to acquire data with minimal dead time are described and the custom and self-contained methods for post-measurement energy discrimination, background correction and velocity-axis folding are discussed. The data are fit using a general Hamiltonian model for the nuclear energy levels of57Fe and a quantum mechanical description of the angular momentum coupling is utilised, with consideration of the crystalline and chemical disorder of the sample under examination. Three examples of distinct magnetic systems, with thicknesses ranging from 5 μ m to 6 mm, that were studied using this method are presented, these are: an amorphous CoFeB-based ribbon with ultra-soft coercivity for high-frequency applications, magnetically hard Nd-Fe-B thick films on Si substrates, examined in both as-deposited and annealed states, and a sample from the nickel-rich iron meteorite NWA 6259 that contains the atomically ordered, elevated coercivity, L 1 0 phase of FeNi, tetrataenite. The wide applicability and usefulness of this method is thus demonstrated on three distinct sample morphologies that required little to no surface preparation prior to examination. 
    more » « less
  4. We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature,TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated withTNis detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to theTNplateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+to fully Eu3+at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhancesTN, most likely via enhanced hybridization between the Eu 4fstates and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state. 
    more » « less
  5. Abstract In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2′−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5eV molecule−1indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimatedgfactor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations. 
    more » « less