The Columbia River basin is a large transboundary basin located in the Pacific Northwest. The basin spans seven US states and one Canadian province, encompassing a diverse range of hydroclimates. Strong seasonality and complex topography are projected to give rise to spatially heterogeneous climate effects on unregulated streamflow. The basin's water resources are economically critical, and regulation across the domain is extensive. Many sensitivity studies have investigated climate impacts on the basin's naturalized hydrology; however, few have considered the large role of regulation. This study investigates where and when regulation affects projected changes in streamflow by comparing climate outcomes across 80‐member ensembles of unregulated and regulated streamflow projections at 75 sites across the basin. Unregulated streamflow projections are taken from an existing data set of climate projections derived from Coupled Model Intercomparison Project version 5 Global Climate Models. Regulated streamflow projections were modeled by the US Army Corps of Engineers and the US Bureau of Reclamation by using these unregulated flows as input to hydro‐regulation models that simulate operations based on current and historical water demands. Regulation dampens shifts in winter and summer streamflow volumes. Regulation generally attenuates changes in cool‐season high flow extremes but amplifies shifts in warm‐season and annual high flow extremes at historically snow‐dominant headwater reservoirs. Regulation reduces dry‐season low flow changes in headwater tributaries where regulation is large but elsewhere has little effect on changes in low flows. Results highlight the importance of accounting for water management in climate sensitivity analysis particularly in snow‐dominant basins.
Quantifying the interconnected impacts of climate change and irrigation on surface water flows is critical for the proactive management of our water resources and the ecosystem services they provide. Changes in streamflow across the Western U.S. have generally been attributed to an aridifying climate, but in many basins flows can also be highly impacted by irrigation. We developed a 35-year dataset consisting of streamflow, climate, irrigated area, and crop water use to quantify the effects of both climate change and irrigation water use on streamflow across 221 basins in the Colorado, Columbia, and Missouri River systems. We demonstrate that flows have been altered beyond observed climate-related changes and that many of these changes are attributable to irrigation. Further, our results indicate that increases in irrigation water use have occurred over much of the study area, a finding that contradicts government-reported irrigation statistics. Increases in crop consumption have enhanced fall and winter flows in some portions of the Upper Missouri and northern Columbia River basins, and have exacerbated climate change-induced flow declines in parts of the Colorado basin. We classify each basin’s water resources sustainability in terms of flow and irrigation trends and link irrigation-induced flow changes to irrigation infrastructure modernization and differences in basin physiographic setting. These results provide a basis for determining where modern irrigation systems benefit basin water supply, and where less efficient systems contribute to return flows and relieve ecological stress.
more » « less- NSF-PAR ID:
- 10480025
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.more » « less
-
Abstract Projections of change in high‐flow extremes with global warming vary widely among, and within, large midlatitude river basins. The spatial variability of these changes is attributable to multiple causes. One possible and little‐studied cause of changes in high‐flow extremes is a change in the synchrony of mainstem and tributary streamflow during high‐flow extremes at the mainstem‐tributary confluence. We examined reconstructed and simulated naturalized daily streamflow at confluences on the Columbia River in western North America, quantifying changes in synchrony in future streamflow projections and estimating the impact of these changes on high‐flow extremes. In the Columbia River basin, projected flow regimes across colder tributaries initially diverge with warming as they respond to climate change at different rates, leading to a general decrease in synchrony, and lower high‐flow extremes, relative to a scenario with no changes in synchrony. Where future warming is sufficiently large to cause most subbasins upstream from a confluence to transition toward a rain‐dominated, warm regime, the decreasing trend in synchrony reverses itself. At one confluence with a major tributary (the Willamette River), where the mainstem and tributary flow regimes are initially very different, warming increases synchrony and, therefore, high‐flow magnitudes. These results may be generalizable to the class of large rivers with large contributions to flood risk from the snow (i.e., cold) regime, but that also receive considerable discharge from tributaries that drain warmer basins.
-
Abstract Bark beetles have impacted over 58 million acres of coniferous forest in the Western US since 2000. Most beetle impacted forests are in snow dominated, water limited headwater basins, which generate a disproportionate fraction of water supplies. Previous studies show mixed impacts of bark beetle outbreaks on streamflow with the potential to cause increased or decreased flows, but these studies either predate long‐term snowpack data, are model‐based, or examine only mountain pine beetle outbreaks. Ours is the first study to use an empirical, climate‐normalized paired catchment approach to quantify streamflow response to spruce beetle kill. Using 27 years of climate and streamflow observations from southwest Colorado, we show that in three of the six beetle impacted study basins, annual climate‐normalized streamflow increased by 22%–37% for at least three to 6 years after the beetle outbreak. Impacted basins exhibited no decreased flows and flows in unimpacted control basins remained unchanged. Among impacted basins, no single basin characteristic clearly explained variation of streamflow response. Higher runoff ratios during snowmelt contribute anywhere from 9% to 64% of streamflow increases, implying the importance of both snow and growing season processes in driving streamflow increases. These findings show variable, sometimes substantial streamflow increases in critical water supply basins following beetle kill in subalpine spruce forests, and contrast with evidence of unchanged or decreased streamflow following beetle kill in lower elevation pine forests in colder northern Colorado basins, highlighting the importance of climate and forest composition in refining hydrologic predictions following mountain forest disturbances.
-
Abstract Understanding the nexus between food, energy, and water systems (FEW) is critical for basins with intensive agricultural water use as they face significant challenges under changing climate and regional development. We investigate the food, energy, and water nexus through a regional hydroeconomic optimization (RHEO) modeling framework. The crop production in RHEO is estimated through a hierarchical regression model developed using a biophysical model, AquaCropOS, forced with daily climatic inputs. Incorporating the hierarchical model within the RHEO also reduces the computation time by enabling parallel programming within the AquaCropOS and facilitates mixed irrigation—rainfed, fully irrigated and deficit irrigation—strategies. To demonstrate the RHEO framework, we considered a groundwater‐dominated basin, South Flint River Basin, Georgia, for developing mixed irrigation strategies over 31 years. Our analyses show that optimal deficit irrigation is economically better than full irrigation, which increases the groundwater pumping cost. Thus, considering deficit irrigation in a groundwater‐dominated basin reduces the water, carbon, and energy footprints, thereby reducing FEW vulnerability. The RHEO also could be employed for analyzing FEW nexus under potential climate change and future regional development scenarios.