skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All-optical geometric image transformations enabled by ultrathin metasurfaces
Abstract Image processing plays a vital role in artificial visual systems, which have diverse applications in areas such as biomedical imaging and machine vision. In particular, optical analog image processing is of great interest because of its parallel processing capability and low power consumption. Here, we present ultra-compact metasurfaces performing all-optical geometric image transformations, which are essential for image processing to correct image distortions, create special image effects, and morph one image into another. We show that our metasurfaces can realize binary image transformations by modifying the spatial relationship between pixels and converting binary images from Cartesian to log-polar coordinates with unparalleled advantages for scale- and rotation-invariant image preprocessing. Furthermore, we extend our approach to grayscale image transformations and convert an image with Gaussian intensity profile into another image with flat-top intensity profile. Our technique will potentially unlock new opportunities for various applications such as target tracking and laser manufacturing.  more » « less
Award ID(s):
2047446
PAR ID:
10480027
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical chiral imaging, as an important tool in chemical and biological analysis, has recently undergone a revolution with the development of chiral metamaterials and metasurfaces. However, the existing chiral imaging approaches based on metamaterials or metasurfaces can only display binary images with 1 bit pixel depth having either black or white pixels. Here, the unique chiral grayscale imaging based on plasmonic metasurfaces of stepped V‐shaped nanoapertures is reported with both high circular dichroism and large polarization linearity in transmission. By interlacing two subarrays of chiral nanoaperture enantiomers into one metasurface, two specific linear polarization profiles are independently generated in transmission under different incident handedness, which can then be converted into two distinct intensity profiles for demonstrating spin‐controlled grayscale images with 8 bit pixel depth. The proposed chiral grayscale imaging approach with subwavelength spatial resolution and high data density provides a versatile platform for many future applications in image encryption and decryption, dynamic display, advanced chiroptical sensing, and optical information processing. 
    more » « less
  2. Abstract Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications. 
    more » « less
  3. Abstract Optical metasurfaces performing analog image processing – such as spatial differentiation and edge detection – hold the potential to reduce processing times and power consumption, while avoiding bulky 4 F lens systems. However, current designs have been suffering from trade-offs between spatial resolution, throughput, polarization asymmetry, operational bandwidth, and isotropy. Here, we show that dispersion engineering provides an elegant way to design metasurfaces where all these critical metrics are simultaneously optimized. We experimentally demonstrate silicon metasurfaces performing isotropic and dual-polarization edge detection, with numerical apertures above 0.35 and spectral bandwidths of 35 nm around 1500 nm. Moreover, we introduce quantitative metrics to assess the efficiency of these devices. Thanks to the low loss nature and dual-polarization response, our metasurfaces feature large throughput efficiencies, approaching the theoretical maximum for a given NA. Our results pave the way for low-loss, high-efficiency and broadband optical computing and image processing with free-space metasurfaces. 
    more » « less
  4. Abstract The free‐space optical vortex transmutation is realized by using geometric plasmonic metasurfaces with the designed noncanonical vortex phase profiles possessing discrete rotational symmetries of finite order. Based on the introduced continuous‐to‐discrete rotational symmetry breaking in metasurfaces, the vortex transmutation phenomena are observed behind the metasurfaces from the near‐field to far‐field diffraction in free space. The near‐field optical beam profile represents the input vortex, while in the far field the input vortex is diffracted into the central output vortex with topological charge determined by the transmutation rule and the symmetrically distributed off‐axis vortices with unity topological charge bifurcating from the input vortex, with the total orbital angular momentum conserved. The demonstrated free‐space optical vortex transformation will promise many potential applications related to optical communication, particle manipulation, and quantum information processing. 
    more » « less
  5. Abstract Signal processing is of critical importance for various science and technology fields. Analog optical processing can provide an effective solution to perform large-scale and real-time data processing, superior to its digital counterparts, which have the disadvantages of low operation speed and large energy consumption. As an important branch of modern optics, Fourier optics exhibits great potential for analog optical image processing, for instance for edge detection. While these operations have been commonly explored to manipulate the spatial content of an image, mathematical operations that act directly over the angular spectrum of an image have not been pursued. Here, we demonstrate manipulation of the angular spectrum of an image, and in particular its differentiation, using dielectric metasurfaces operating across the whole visible spectrum. We experimentally show that this technique can be used to enhance desired portions of the angular spectrum of an image. Our approach can be extended to develop more general angular spectrum analog meta-processors, and may open opportunities for optical analog data processing and biological imaging. 
    more » « less