skip to main content


This content will become publicly available on December 1, 2024

Title: Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks
Abstract

The electrochemical ammonia oxidation to dinitrogen as a means for energy and environmental applications is a key technology toward the realization of a sustainable nitrogen cycle. The state-of-the-art metal catalysts including Pt and its bimetallics with Ir show promising activity, albeit suffering from high overpotentials for appreciable current densities and the soaring price of precious metals. Herein, the immense design space of ternary Pt alloy nanostructures is explored by graph neural networks trained on ab initio data for concurrently predicting site reactivity, surface stability, and catalyst synthesizability descriptors. Among a few Ir-free candidates that emerge from the active learning workflow, Pt3Ru-M (M: Fe, Co, or Ni) alloys were successfully synthesized and experimentally verified to be more active toward ammonia oxidation than Pt, Pt3Ir, and Pt3Ru. More importantly, feature attribution analyses using the machine-learned representation of site motifs provide fundamental insights into chemical bonding at metal surfaces and shed light on design strategies for high-performance catalytic systems beyond thed-band center metric of binding sites.

 
more » « less
Award ID(s):
1845531
NSF-PAR ID:
10480065
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The electrochemical nitrate reduction reaction (NO3RR) to ammonia is an essential step toward restoring the globally disrupted nitrogen cycle. In search of highly efficient electrocatalysts, tailoring catalytic sites with ligand and strain effects in random alloys is a common approach but remains limited due to the ubiquitous energy-scaling relations. With interpretable machine learning, we unravel a mechanism of breaking adsorption-energy scaling relations through the site-specific Pauli repulsion interactions of the metald-states with adsorbate frontier orbitals. The non-scaling behavior can be realized on (100)-type sites of ordered B2 intermetallics, in which the orbital overlap between the hollow *N and subsurface metal atoms is significant while the bridge-bidentate *NO3is not directly affected. Among those intermetallics predicted, we synthesize monodisperse ordered B2 CuPd nanocubes that demonstrate high performance for NO3RR to ammonia with a Faradaic efficiency of 92.5% at −0.5 VRHEand a yield rate of 6.25 mol h−1g−1at −0.6 VRHE. This study provides machine-learned design rules besides thed-band center metrics, paving the path toward data-driven discovery of catalytic materials beyond linear scaling limitations.

     
    more » « less
  2. Abstract

    Platinum‐based catalysts are critical to several chemical processes, but their efficiency is not satisfying enough in some cases, because only the surface active‐site atoms participate in the reaction. Henceforth, catalysts with single‐atom dispersions are highly desirable to maximize their mass efficiency, but fabricating these structures using a controllable method is still challenging. Most previous studies have focused on crystalline materials. However, amorphous materials may have enhanced performance due to their distorted and isotropic nature with numerous defects. Here reported is the facile synthesis of an atomically dispersed catalyst that consists of single Pt atoms and amorphous Fe2O3nanosheets. Rational control can regulate the morphology from single atom clusters to sub‐nanoparticles. Density functional theory calculations show the synergistic effect resulted from the strong binding and stabilization of single Pt atoms with the strong metal‐support interaction between the in situ locally anchored Pt atoms and Fe2O3lead to a weak CO adsorption. Moreover, the distorted amorphous Fe2O3with O vacancies is beneficial for the activation of O2, which further facilitates CO oxidation on nearby Pt sites or interface sites between Pt and Fe2O3, resulting in the extremely high performance for CO oxidation of the atomic catalyst.

     
    more » « less
  3. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containing acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells. 
    more » « less
  4. Abstract

    Site‐selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site‐selective modification strategy utilizing poly(ethylene oxide)‐block‐polystyrene (PEO‐b‐PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO‐b‐PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2/WO3‐xframework, and meanwhile FeOxnanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal‐support interaction between FeOxand Pt. The selective modification of Pt NPs with FeOxmakes the Pt NPs present an electron‐deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2/WO3‐x‐FeOx/Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).

     
    more » « less
  5. Abstract

    To achieve efficient ammonia synthesis via electrochemical nitrogen reduction reaction (NRR), a qualified catalyst should have both high specific activity and large active surface area. However, integrating these two merits into one single material remains a big challenge due to the difficulty in balancing multiple reaction intermediates. Here, it is demonstrated that the boron‐analogues of MXenes, namely “MBenes”, could cope with the challenge and achieve the high activity and large reaction region simultaneously toward NRR. Using extensive density functional theory computations and taking 16 MBenes as representatives, it is identified that seven MBenes (CrB, MoB, WB, Mo2B, V3B4, CrMnB2, and CrFeB2) not only have intrinsic basal plane activity for NRR with limiting potentials ranging from −0.22 to −0.82 V, but also possess superior capability of suppressing the competitive hydrogen evolution reaction. Particularly, different from the MXenes whose surface oxidation may block the active sites, once oxidized, these MBenes can catalyze NRR via the self‐activating process, reducing O*/OH* into H2O* under reaction conditions, and favoring the N2electroreduction. As a result, the exceptional activity and selectivity, high active area (≈1019m−2), and antioxidation nature render these MBenes as pH‐universal catalysts for NH3production without introducing any dopants and defects.

     
    more » « less