We present estimates of the ultraviolet (UV) and Lyman continuum flux density contributed by galaxies of luminosities from to at redshifts 5≤z≤10 using a galaxy formation model that reproduces properties of local dwarf galaxies down to the luminosities of the ultra-faint satellites. We characterize the UV luminosity function (LF) of galaxies and their abundance as a function of the ionizing photon emission rate predicted by our model and present accurate fitting functions describing them. Although the slope of the LF becomes gradually shallower with decreasing luminosity due to feedback-driven outflows, the UV LF predicted by the model remains quite steep at the luminosities . After reionization, the UV LF flattens at due to UV heating of intergalactic gas. However, before reionization, the slope of the LF remains steep and approximately constant from to . We show that for a constant ionizing photon escape fraction the contribution of faint galaxies with to the UV flux and ionizing photon budget is ≈40−60% at z>7 and decreases to ≈20% at z=6. Before reionization, even ultra-faint galaxies of contribute ≈10−25% of ionizing photons. If the escape fraction increases strongly for fainter galaxies, the contribution of galaxies before reionization increases to ≈60−75%. Our results imply that dwarf galaxies fainter than , beyond the James Webb Space Telescope limit, contribute significantly to the UV flux density and ionizing photon budget before reionization alleviating requirements on the escape fraction of Lyman continuum photons.
more »
« less
Predicting the UV Escape Fraction of the First Galaxies in the Renaissance Simulations with Machine Learning
Abstract Cosmic reionization is likely driven by UV starlight emanating from the first generations of galaxies. A galaxy’s UV escape fraction, or the fraction of photons escaping from the galaxy, is useful to quantify its contribution to reionization. However, the UV escape fraction is notoriously difficult to predict due to local environment dependency and variability over time. Using data from the Renaissance Simulations, we attempt to make predictions about the impact of the first stars and galaxies on their environments. We present a time-independent classification model using a general artificial neural network architecture to predict the UV escape fraction given other galaxy properties—namely halo mass, stellar mass, redshift, star formation rate, lookback time, and gas fraction. We find our validation accuracy to be approximately 50%–65%, depending on the data set size from each zoom-in region of the Renaissance Simulations.
more »
« less
- PAR ID:
- 10480074
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 7
- Issue:
- 11
- ISSN:
- 2515-5172
- Page Range / eLocation ID:
- 242
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity-halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity-halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, \overline xHI, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer \overline xHI = 0.55-0.13+0.11 with scatter, compared to \overline xHI = 0.59-0.14+0.12 without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.more » « less
-
ABSTRACT We introduce the thesan project, a suite of large volume ($$L_\mathrm{box} = 95.5 \, \mathrm{cMpc}$$) radiation-magnetohydrodynamic simulations that simultaneously model the large-scale statistical properties of the intergalactic medium during reionization and the resolved characteristics of the galaxies responsible for it. The flagship simulation has dark matter and baryonic mass resolutions of $$3.1 \times 10^6\, {\rm M_\odot }$$ and $$5.8 \times 10^5\, {\rm M_\odot }$$, respectively. The gravitational forces are softened on scales of 2.2 ckpc with the smallest cell sizes reaching 10 pc at z = 5.5, enabling predictions down to the atomic cooling limit. The simulations use an efficient radiation hydrodynamics solver (arepo-rt) that precisely captures the interaction between ionizing photons and gas, coupled to well-tested galaxy formation (IllustrisTNG) and dust models to accurately predict the properties of galaxies. Through a complementary set of medium resolution simulations we investigate the changes to reionization introduced by different assumptions for ionizing escape fractions, varying dark matter models, and numerical convergence. The fiducial simulation and model variations are calibrated to produce realistic reionization histories that match the observed evolution of the global neutral hydrogen fraction and electron scattering optical depth to reionization. They also match a wealth of high-redshift observationally inferred data, including the stellar-to-halo-mass relation, galaxy stellar mass function, star formation rate density, and the mass–metallicity relation, despite the galaxy formation model being mainly calibrated at z = 0. We demonstrate that different reionization models give rise to varied bubble size distributions that imprint unique signatures on the 21 cm emission, especially on the slope of the power spectrum at large spatial scales, enabling current and upcoming 21 cm experiments to accurately characterize the sources that dominate the ionizing photon budget.more » « less
-
Abstract A fundamental requirement for reionizing the Universe is that a sufficient fraction of the ionizing photons emitted by galaxies successfully escapes into the intergalactic medium. However, due to the scarcity of high-redshift observational data, the sources driving reionization remain uncertain. In this work, we calculate the ionizing escape fractions (fesc) of reionization-era galaxies from the state-of-the-art thesan simulations, which combine an accurate radiation-hydrodynamic solver (arepo-rt) with the well-tested IllustrisTNG galaxy formation model to self-consistently simulate both small-scale galaxy physics and large-scale reionization throughout a large patch of the universe ($$L_\text{box} = 95.5\, \text{cMpc}$$). This allows the formation of numerous massive haloes ($$M_\text{halo} \gtrsim 10^{10}\, {\text{M}_{\odot }}$$), which are often statistically underrepresented in previous studies but are believed to be important to achieving rapid reionization. We find that low-mass galaxies ($$M_\text{stars} \lesssim 10^7\, {\text{M}_{\odot }}$$) are the main drivers of reionization above z ≳ 7, while high-mass galaxies ($$M_\text{stars} \gtrsim 10^8\, {\text{M}_{\odot }}$$) dominate the escaped ionizing photon budget at lower redshifts. We find a strong dependence of fesc on the effective star formation rate (SFR) surface density defined as the SFR per gas mass per escape area, i.e. $$\bar{\Sigma }_\text{SFR} = \text{SFR}/M_\text{gas}/R_{200}^2$$. The variation in halo escape fractions decreases for higher mass haloes, which can be understood from the more settled galactic structure, SFR stability, and fraction of sightlines within each halo significantly contributing to the escaped flux. Dust is capable of reducing the escape fractions of massive galaxies, but the impact on the global fesc depends on the dust model. Finally, active galactic nuclei are unimportant for reionization in thesan and their escape fractions are lower than stellar ones due to being located near the centres of galaxy gravitational potential wells.more » « less
-
ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $$\overline{x}_{\mathrm{ H}\,{\small I}}$$, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $$\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$$ with scatter, compared to $$\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.more » « less
An official website of the United States government

