skip to main content


Title: The impact of scatter in the galaxy UV luminosity to halo mass relation on Ly α visibility during the epoch of reionization
ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $\overline{x}_{\mathrm{ H}\,{\small I}}$, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$ with scatter, compared to $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.  more » « less
Award ID(s):
1810822
NSF-PAR ID:
10170588
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
495
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
3602 to 3613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Recent work has shown that UV-luminous reionization-era galaxies often exhibit strong Lyman-alpha emission despite being situated at redshifts where the IGM is thought to be substantially neutral. It has been argued that this enhanced Ly α transmission reflects the presence of massive galaxies in overdense regions which power large ionized bubbles. An alternative explanation is that massive galaxies shift more of their Ly α profile to large velocities (relative to the systemic redshift) where the IGM damping wing absorption is reduced. Such a mass-dependent trend is seen at lower redshifts, but whether one exists at z ∼ 7 remains unclear owing to the small number of existing systemic redshift measurements in the reionization era. This is now changing with the emergence of [C ii]-based redshifts from ALMA. Here, we report MMT/Binospec Ly α spectroscopy of eight UV-bright (MUV ∼ −22) galaxies at z ≃ 7 selected from the ALMA REBELS survey. We detect Ly α in four of eight galaxies and use the [C ii] systemic redshifts to investigate the Ly α velocity profiles. The Ly α lines are significantly redshifted from systemic (average velocity offset = 223 km s–1) and broad (FWHM ≈ 300–650 km s−1), with two sources showing emission extending to ≈750 km s−1. We find that the broadest Ly α profiles are associated with the largest [C ii] line widths, suggesting a potential link between the Ly α FWHM and the dynamical mass. Since Ly α photons at high velocities transmit efficiently through the z = 7 IGM, our data suggest that velocity profiles play a significant role in boosting the Ly α visibility of the most UV-luminous reionization-era galaxies.

     
    more » « less
  2. ABSTRACT

    Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Ly α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.

     
    more » « less
  3. ABSTRACT

    We present a Bayesian inference on the neutral hydrogen fraction of the intergalactic medium (IGM), $\overline{x}_{\small HI}$, at z ∼ 6–8 using the properties of Lyman break galaxies (LBGs) during the epoch of reionization. We use large samples of LBG candidates at 5.5 ≤ z ≤ 8.2 with spectroscopy from Keck/DEIMOS and Keck/MOSFIRE. For each galaxy, we incorporate either the Lyman-α (Lyα) equivalent width (EW) for detections or the EW limit spectrum for non-detections to parametrize the EW distribution at various ultraviolet brightnesses for a given redshift. Using our reference sample of galaxy candidates from the ionized universe at z ∼ 6.0, we are able to infer $\overline{x}_{\small HI}$ at two redshifts: z ∼ 6.7 and z ∼ 7.6. This work includes intrinsically faint, gravitationally lensed galaxies at z ∼ 6.0 in order to constrain the intrinsic faint-end Lyα EW distribution and provide a comparable population of galaxies to counterparts in our sample that are at higher redshift. The inclusion of faint galaxy candidates, in addition to a more sophisticated modelling framework, allows us to better isolate effects of the interstellar medium and circumgalactic medium on the observed Lyα distribution from those of the IGM. We infer an upper limit of $\overline{x}_{\small HI}$ ≤ 0.25 (0.44) at z = 6.7 ± 0.2 and a neutral fraction of $\overline{x}_{\small HI}$ = $0.83^{+0.08}_{-0.11}$ (0.83$^{+0.11}_{-0.21}$) at z = 7.6 ± 0.6, both within 68 per cent (95 per cent) uncertainty, results that favour a moderately late and fairly rapid reionization.

     
    more » « less
  4. ABSTRACT

    The observed properties of the Lyman-α (Ly α) emission line are a powerful probe of neutral gas in and around galaxies. We present spatially resolved Ly α spectroscopy with VLT/MUSE targeting VR7, a UV-luminous galaxy at z = 6.532 with moderate Ly α equivalent width (EW0 ≈ 38 Å). These data are combined with deep resolved [CII]158μm spectroscopy obtained with ALMA and UV imaging from HST and we also detect UV continuum with MUSE. Ly α emission is clearly detected with S/N ≈ 40 and FWHM of 374 km s−1. Ly α and [C ii] are similarly extended beyond the UV, with effective radius reff = 2.1 ± 0.2 kpc for a single exponential model or r$_{\rm eff, Ly\alpha , halo} = 3.45^{+1.08}_{-0.87}$ kpc when measured jointly with the UV continuum. The Ly α profile is broader and redshifted with respect to the [C ii] line (by 213 km s−1), but there are spatial variations that are qualitatively similar in both lines and coincide with resolved UV components. This suggests that the emission originates from two components with plausibly different H i column densities. We place VR7 in the context of other galaxies at similar and lower redshift. The Ly α halo scale length is similar at different redshifts and velocity shifts with respect to the systemic are typically smaller. Overall, we find little indications of a more neutral vicinity at higher redshift. This means that the local (∼10 kpc) neutral gas conditions that determine the observed Ly α properties in VR7 resemble the conditions in post-reionization galaxies.

     
    more » « less
  5. Abstract The absorption by neutral hydrogen in the intergalactic medium (IGM) produces the Ly α forest in the spectra of quasars. The Ly α forest absorbers have a broad distribution of neutral hydrogen column density N H I and Doppler b parameter. The narrowest Ly α absorption lines (of lowest b ) with neutral hydrogen column density above ∼10 13 cm −2 are dominated by thermal broadening, which can be used to constrain the thermal state of the IGM. Here we constrain the temperature-density relation T = T 0 ( ρ / ρ ¯ ) γ − 1 of the IGM at 1.6 < z < 3.6 by using N H I and b parameters measured from 24 high-resolution and high-signal-to-noise quasar spectra and by employing an analytic model to model the N H I -dependent low- b cutoff in the b distribution. In each N H I bin, the b cutoff is estimated using two methods, one non-parametric method from computing the cumulative b distribution and a parametric method from fitting the full b distribution. We find that the IGM temperature T 0 at the mean gas density ρ ¯ shows a peak of ∼1.5 × 10 4 K at z ∼ 2.7–2.9. At redshift higher than this, the index γ approximately remains constant, and it starts to increase toward lower redshifts. The evolution in both parameters is in good agreement with constraints from completely different approaches, which signals that He ii reionization completes around z ∼ 3. 
    more » « less