Recent work has shown that UV-luminous reionization-era galaxies often exhibit strong Lyman-alpha emission despite being situated at redshifts where the IGM is thought to be substantially neutral. It has been argued that this enhanced Ly α transmission reflects the presence of massive galaxies in overdense regions which power large ionized bubbles. An alternative explanation is that massive galaxies shift more of their Ly α profile to large velocities (relative to the systemic redshift) where the IGM damping wing absorption is reduced. Such a mass-dependent trend is seen at lower redshifts, but whether one exists at z ∼ 7 remains unclear owing to the small number of existing systemic redshift measurements in the reionization era. This is now changing with the emergence of [C ii]-based redshifts from ALMA. Here, we report MMT/Binospec Ly α spectroscopy of eight UV-bright (MUV ∼ −22) galaxies at z ≃ 7 selected from the ALMA REBELS survey. We detect Ly α in four of eight galaxies and use the [C ii] systemic redshifts to investigate the Ly α velocity profiles. The Ly α lines are significantly redshifted from systemic (average velocity offset = 223 km s–1) and broad (FWHM ≈ 300–650 km s−1), with two sources showing emission extending to ≈750 km s−1. We find that the broadest Ly α profiles aremore »
- Award ID(s):
- 1810822
- Publication Date:
- NSF-PAR ID:
- 10170588
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 495
- Issue:
- 4
- Page Range or eLocation-ID:
- 3602 to 3613
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Lymore »
-
ABSTRACT We present a Bayesian inference on the neutral hydrogen fraction of the intergalactic medium (IGM), $\overline{x}_{\small HI}$, at z ∼ 6–8 using the properties of Lyman break galaxies (LBGs) during the epoch of reionization. We use large samples of LBG candidates at 5.5 ≤ z ≤ 8.2 with spectroscopy from Keck/DEIMOS and Keck/MOSFIRE. For each galaxy, we incorporate either the Lyman-α (Lyα) equivalent width (EW) for detections or the EW limit spectrum for non-detections to parametrize the EW distribution at various ultraviolet brightnesses for a given redshift. Using our reference sample of galaxy candidates from the ionized universe at z ∼ 6.0, we are able to infer $\overline{x}_{\small HI}$ at two redshifts: z ∼ 6.7 and z ∼ 7.6. This work includes intrinsically faint, gravitationally lensed galaxies at z ∼ 6.0 in order to constrain the intrinsic faint-end Lyα EW distribution and provide a comparable population of galaxies to counterparts in our sample that are at higher redshift. The inclusion of faint galaxy candidates, in addition to a more sophisticated modelling framework, allows us to better isolate effects of the interstellar medium and circumgalactic medium on the observed Lyα distribution from those of the IGM. We infer an upper limitmore »
-
ABSTRACT We present new [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$ observations of five bright z ∼ 7 Lyman-break galaxies spectroscopically confirmed by ALMA through [${\rm C\, {\small II}}$] 158 $\mu \mathrm{{m}}$, unlike recent [${\rm O\, {\small III}}$] detections where Lyman α was used. This nearly doubles the sample of Epoch of Reionization galaxies with robust (5σ) [${\rm C\, {\small II}}$] and [${\rm O\, {\small III}}$] detections. We perform a multiwavelength comparison with new deep HST images of the rest-frame UV, whose compact morphology aligns well with [${\rm O\, {\small III}}$] tracing ionized gas. In contrast, we find more spatially extended [${\rm C\, {\small II}}$] emission likely produced in neutral gas, as indicated by an [${\rm N\, {\small II}}$] 205-$\mu \mathrm{{m}}$ non-detection in one source. We find a correlation between the optical ${[{\rm O\, {\small III}}]}+ {\mathrm{H\,\beta }}$ equivalent width and [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$], as seen in local metal-poor dwarf galaxies. cloudy models of a nebula of typical density harbouring a young stellar population with a high-ionization parameter adequately reproduce the observed lines. Surprisingly, however, our models fail to reproduce the strength of [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$, unless we assume an α/Fe enhancement and near-solar nebular oxygenmore »
-
ABSTRACT The observed properties of the Lyman-α (Ly α) emission line are a powerful probe of neutral gas in and around galaxies. We present spatially resolved Ly α spectroscopy with VLT/MUSE targeting VR7, a UV-luminous galaxy at z = 6.532 with moderate Ly α equivalent width (EW0 ≈ 38 Å). These data are combined with deep resolved [CII]158μm spectroscopy obtained with ALMA and UV imaging from HST and we also detect UV continuum with MUSE. Ly α emission is clearly detected with S/N ≈ 40 and FWHM of 374 km s−1. Ly α and [C ii] are similarly extended beyond the UV, with effective radius reff = 2.1 ± 0.2 kpc for a single exponential model or r$_{\rm eff, Ly\alpha , halo} = 3.45^{+1.08}_{-0.87}$ kpc when measured jointly with the UV continuum. The Ly α profile is broader and redshifted with respect to the [C ii] line (by 213 km s−1), but there are spatial variations that are qualitatively similar in both lines and coincide with resolved UV components. This suggests that the emission originates from two components with plausibly different H i column densities. We place VR7 in the context of other galaxies at similar and lower redshift. The Ly α halo scale length is similar at different redshifts and velocity shifts with respect to the systemic are typically smaller. Overall, we findmore »