skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PMNet: Large-Scale Channel Prediction System for ICASSP 2023 First Pathloss Radio Map Prediction Challenge
This paper describes our pathloss prediction system submitted to the ICASSP 2023 First Pathloss Radio Map Prediction Challenge. We describe the architecture of PMNet, a neural network we specifically designed for pathloss prediction. Moreover, to enhance the prediction performance, we apply several machine learning techniques, including data augmentation, fine-tuning, and optimization of the network architecture. Our system achieves an RMSE of 0.02569 on the provided RadioMap3Dseer dataset, and 0.0383 on the challenge test set, placing it in the 1st rank of the challenge.  more » « less
Award ID(s):
2133655
PAR ID:
10480092
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-7281-6327-7
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Location:
Rhodes Island, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. Pathloss prediction is an essential component of wireless network planning. While ray tracing based methods have been successfully used for many years, they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in 5G/B5G (beyond 5G) systems. In this paper, we propose and evaluate a data-driven and model-free pathloss prediction method, dubbed PMNet. This method uses a supervised learning approach: training a neural network (NN) with a limited amount of ray tracing (or channel measurement) data and map data and then predicting the pathloss over location with no ray tracing data with a high level of accuracy. Our proposed pathloss map prediction-oriented NN architecture, which is empowered by state-of-the-art computer vision techniques, outperforms other architectures that have been previously proposed (e.g., UNet, RadioUNet) in terms of accuracy while showing generalization capability. Moreover, PMNet trained on a 4-fold smaller dataset surpasses the other baselines (trained on a 4-fold larger dataset), corroborating the potential of PMNet.1 
    more » « less
  2. Large-scale channel prediction, i.e., estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of 10−2 ) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly ( ×5.6 faster training) and efficiently (using ×4.5 less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications. 
    more » « less
  3. Recently, a multi-agent based network automation architecture has been proposed. The architecture is named multi-agent based network automation of the network management system (MANA-NMS). The architectural framework introduced atomized network functions (ANFs). ANFs should be autonomous, atomic, and intelligent agents. Such agents should be implemented as an independent decision element, using machine/deep learning (ML/DL) as an internal cognitive and reasoning part. Using these atomic and intelligent agents as a building block, a MANA-NMS can be composed using the appropriate functions. As a continuation toward implementation of the architecture MANA-NMS, this paper presents a network traffic prediction agent (NTPA) and a network traffic classification agent (NTCA) for a network traffic management system. First, an NTPA is designed and implemented using DL algorithms, i.e., long short-term memory (LSTM), gated recurrent unit (GRU), multilayer perceptrons (MLPs), and convolutional neural network (CNN) algorithms as a reasoning and cognitive part of the agent. Similarly, an NTCA is designed using decision tree (DT), K-nearest neighbors (K-NN), support vector machine (SVM), and naive Bayes (NB) as a cognitive component in the agent design. We then measure the NTPA prediction accuracy, training latency, prediction latency, and computational resource consumption. The results indicate that the LSTM-based NTPA outperforms compared to GRU, MLP, and CNN-based NTPA in terms of prediction accuracy, and prediction latency. We also evaluate the accuracy of the classifier, training latency, classification latency, and computational resource consumption of NTCA using the ML models. The performance evaluation shows that the DT-based NTCA performs the best. 
    more » « less
  4. High performance computing (HPC) system runs compute-intensive parallel applications requiring large number of nodes. An HPC system consists of heterogeneous computer architecture nodes, including CPUs, GPUs, field programmable gate arrays (FPGAs), etc. Power capping is a method to improve parallel application performance subject to variable power constraints. In this paper, we propose a parallel application power and performance prediction simulator. We present prediction model to predict application power and performance for unknown power-capping values considering heterogeneous computing architecture. We develop a job scheduling simulator based on parallel discrete-event simulation engine. The simulator includes a power and performance prediction model, as well as a resource allocation model. Based on real-life measurements and trace data, we show the applicability of our proposed prediction model and simulator. 
    more » « less
  5. Abstract Emotion prediction plays an essential role in mental healthcare and emotion-aware computing. The complex nature of emotion resulting from its dependency on a person’s physiological health, mental state, and his surroundings makes its prediction a challenging task. In this work, we utilize mobile sensing data to predict self-reported happiness and stress levels. In addition to a person’s physiology, we also incorporate the environment’s impact through weather and social network. To this end, we leverage phone data to construct social networks and develop a machine learning architecture that aggregates information from multiple users of the graph network and integrates it with the temporal dynamics of data to predict emotion for all users. The construction of social networks does not incur additional costs in terms of ecological momentary assessments or data collection from users and does not raise privacy concerns. We propose an architecture that automates the integration of the user’s social network in affect prediction and is capable of dealing with the dynamic distribution of real-life social networks, making it scalable to large-scale networks. The extensive evaluation highlights the prediction performance improvement provided by the integration of social networks. We further investigate the impact of graph topology on the model’s performance. 
    more » « less