Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm‐dependent asexuals that produce non‐recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm‐dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping‐stones in speciation, or indirectly, by promoting the formation of pre‐ and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm‐dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short‐lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm‐dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.
Asexual reproduction is ancestral in prokaryotes; the switch to sexuality in eukaryotes is one of the major transitions in the history of life. The study of the maintenance of sex in eukaryotes has raised considerable interest for decades and is still one of evolutionary biology’s most prominent question. The observation that many asexual species are of hybrid origin has led some to propose that asexuality in hybrids results from sexual processes being disturbed because of incompatibilities between the two parental species’ genomes. However, in some cases, failure to produce asexual F1s in the lab may indicate that this mechanism is not the only road to asexuality in hybrid species. Here, we present a mathematical model and propose an alternative, adaptive route for the evolution of asexuality from previously sexual hybrids. Under some reproductive alterations, we show that asexuality can evolve to rescue hybrids’ reproduction. Importantly, we highlight that when incompatibilities only affect the fusion of sperm and egg’s genomes, the two traits that characterize asexuality, namely unreduced meiosis and the initiation of embryogenesis without the incorporation of the sperm’s pronucleus, can evolve separately, greatly facilitating the overall evolutionary route. Taken together, our results provide an alternative, potentially complementary explanation for the link between asexuality and hybridization.
more » « less- Award ID(s):
- 1916519
- PAR ID:
- 10480094
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 77
- Issue:
- 10
- ISSN:
- 0014-3820
- Format(s):
- Medium: X Size: p. 2186-2199
- Size(s):
- p. 2186-2199
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid‐dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life‐cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid–diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life‐cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally.
-
null (Ed.)The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that “incompatible” interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations.more » « less
-
Murphy, William (Ed.)Abstract Organisms across the tree of life have complex life cycles that include both sexual and asexual reproduction or that are obligately asexual. These organisms include ecologically dominant species that structure many terrestrial and marine ecosystems, as well as many pathogens, pests, and invasive species. We must consider both the evolution and maintenance of these various reproductive modes and how these modes shape the genetic diversity, adaptive evolution, and ability to persist in the species that exhibit them. Thus, having a common framework is a key aspect of understanding the biodiversity that shapes our planet. In the 2019 AGA President’s Symposium, Sex and Asex: The genetics of complex life cycles, researchers investigating a wide range of taxonomic models and using a variety of modes of investigation coalesced around a common theme—understanding not only how such complex life cycles may evolve, but how they are shaped by the evolutionary and ecological forces around them. In this introduction to the Special Issue from the symposium, we give an overview of some of the key ideas and areas of investigation (a common clonal lexicon, we might say) and introduce the breadth of work submitted by symposium participants.more » « less
-
Abstract Many organisms can reproduce both asexually and sexually. For cyclical parthenogens, periods of asexual reproduction are punctuated by bouts of sexual reproduction, and the shift from asexual to sexual reproduction has large impacts on fitness and population dynamics. We studied populations of
Daphnia dentifera to determine the amount of investment in sexual reproduction as well as the factors associated with variation in investment in sex. To do so, we tracked host density, infections by nine different parasites, and sexual reproduction in 15 lake populations ofD. dentifera for 3 years. Sexual reproduction was seasonal, with male and ephippial female production beginning as early as late September and generally increasing through November. However, there was substantial variation in the prevalence of sexual individuals across populations, with some populations remaining entirely asexual throughout the study period and others shifting almost entirely to sexual females and males. We found strong relationships between density, prevalence of infection, parasite species richness, and sexual reproduction in these populations. However, strong collinearity between density, parasitism, and sexual reproduction means that further work will be required to disentangle the causal mechanisms underlying these relationships.