Abstract The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid‐dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life‐cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid–diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life‐cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally.
more »
« less
Let's talk about sex: Why reproductive systems matter for understanding algae
Abstract Sex is a crucial process that has molecular, genetic, cellular, organismal, and population‐level consequences for eukaryotic evolution. Eukaryotic life cycles are composed of alternating haploid and diploid phases but are constrained by the need to accommodate the phenotypes of these different phases. Critical gaps in our understanding of evolutionary drivers of the diversity in algae life cycles include how selection acts to stabilize and change features of the life cycle. Moreover, most eukaryotes are partially clonal, engaging in both sexual and asexual reproduction. Yet, our understanding of the variation in their reproductive systems is largely based on sexual reproduction in animals or angiosperms. The relative balance of sexual versus asexual reproduction not only controls but also is in turn controlled by standing genetic variability, thereby shaping evolutionary trajectories. Thus, we must quantitatively assess the consequences of the variation in life cycles on reproductive systems. Algae are a polyphyletic group spread across many of the major eukaryotic lineages, providing powerful models by which to resolve this knowledge gap. There is, however, an alarming lack of data about the population genetics of most algae and, therefore, the relative frequency of sexual versus asexual processes. For many algae, the occurrence of sexual reproduction is unknown, observations have been lost in overlooked papers, or data on population genetics do not yet exist. This greatly restricts our ability to forecast the consequences of climate change on algal populations inhabiting terrestrial, aquatic, and marine ecosystems. This perspective summarizes our extant knowledge and provides some future directions to pursue broadly across micro‐ and macroalgal species.
more »
« less
- PAR ID:
- 10513914
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 0022-3646
- Format(s):
- Medium: X Size: p. 581-597
- Size(s):
- p. 581-597
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Murphy, William (Ed.)Abstract Organisms across the tree of life have complex life cycles that include both sexual and asexual reproduction or that are obligately asexual. These organisms include ecologically dominant species that structure many terrestrial and marine ecosystems, as well as many pathogens, pests, and invasive species. We must consider both the evolution and maintenance of these various reproductive modes and how these modes shape the genetic diversity, adaptive evolution, and ability to persist in the species that exhibit them. Thus, having a common framework is a key aspect of understanding the biodiversity that shapes our planet. In the 2019 AGA President’s Symposium, Sex and Asex: The genetics of complex life cycles, researchers investigating a wide range of taxonomic models and using a variety of modes of investigation coalesced around a common theme—understanding not only how such complex life cycles may evolve, but how they are shaped by the evolutionary and ecological forces around them. In this introduction to the Special Issue from the symposium, we give an overview of some of the key ideas and areas of investigation (a common clonal lexicon, we might say) and introduce the breadth of work submitted by symposium participants.more » « less
-
Abstract The relative rates of sexual versus asexual reproduction influence the partitioning of genetic diversity within and among populations. During range expansions, asexual reproduction often facilitates colonization and establishment. The arrival of the green algaAvrainvillea laceratahas caused shifts in habitat structure and community assemblages since its discovery in 1981 offshore of Oʻahu, Hawai‘i. Field observations suggest this species is spreading via vegetative reproduction. To characterize the reproductive system ofA. laceratain Hawai‘i, we developed seven microsatellite loci and genotyped 321 blades collected between 2018 and 2023 from three intertidal sites at Maunalua Bay and ʻEwa Beach. We observed one to four alleles at multiple loci, suggestingA. laceratais tetraploid. Each site was characterized by high genotypic richness (R > 0.8). However, clonal rates were also high, suggesting the vegetative spread ofA. lacerataplays a significant role. The importance of clonal reproduction for the persistence ofA. laceratain Hawai‘i is consistent with the ecological data collected for this species and observations of other abundant macroalgal invaders in Hawai‘i and other regions of the world. These data demonstrate the necessity for implementing appropriate population genetic methods and provide insights into the biology of this alga that will contribute to future studies on effective management strategies incorporating its reproductive system. This study represents one of the few that investigate green algal population genetic patterns and contributes to our understanding of algal reproductive system evolution.more » « less
-
Abstract Sexual systems (i.e., separate vs. combined sexes) vary widely among eukaryotes and influence the evolution of reproductive systems, which shape genetic structure and evolutionary trajectories. In diploid‐dominant angiosperms, combined (i.e., hermaphroditism) and separate sexes are expected to correlate with selfing and outcrossing, respectively. When sex is determined in the haploid phase, selfing is possible even when there are separate sexes. The freshwater red macroalgal genusSheathia(Batrachospermales) displays sexual system variation within and among populations, but no prior data exist on the reproductive systems of these populations. We developed 16 polymorphic microsatellite loci to characterize the reproductive system and genetic structure of threeSheathiaspecies. We observed cross‐amplification of loci across the three targeted species, suggesting these markers may be useful in otherSheathiaspp. We observed variation in monoicy (i.e., hermaphroditism) versus dioicy (i.e., separate sexes) in each species, includingS. americana, which was previously believed to be obligately dioicous. Our data suggest thatS. americanaandS. involutadisplay more variation in their prevailing reproductive modes as compared toS. grandis. Generally, dioicy resulted in greater diversity in contrast to monoicy. We observed strong population structure that is likely driven by uniparental reproduction and limited dispersal; however, there is limited population connectivity that may be facilitated by long‐distance dispersal events. Overall, these data contribute to our knowledge of the relationship between the sexual system, reproductive system, and population genetic structure in haploid‐diploid taxa, thereby informing a broader understanding of the evolution of sex.more » « less
-
Phenotypic Variation in Mitochondria-Related Performance Traits Across New Zealand Snail PopulationsSynopsis Mitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes—the mitochondrial genome and the nuclear genome—and selection is expected to maintain functional mito-nuclear interactions. The documented high levels of polymorphism in genes involved in these mito-nuclear interactions and wide variation for mitochondrial function demands an explanation for how and why variability in such a fundamental trait is maintained. Potamopyrgus antipodarum is a New Zealand freshwater snail with coexisting sexual and asexual individuals and, accordingly, contrasting systems of separate vs. co-inheritance of nuclear and mitochondrial genomes. As such, this snail provides a powerful means to dissect the evolutionary and functional consequences of mito-nuclear variation. The lakes inhabited by P. antipodarum span wide environmental gradients, with substantial across-lake genetic structure and mito-nuclear discordance. This situation allows us to use comparisons across reproductive modes and lakes to partition variation in cellular respiration across genetic and environmental axes. Here, we integrated cellular, physiological, and behavioral approaches to quantify variation in mitochondrial function across a diverse set of wild P. antipodarum lineages. We found extensive across-lake variation in organismal oxygen consumption and behavioral response to heat stress and differences across sexes in mitochondrial membrane potential but few global effects of reproductive mode. Taken together, our data set the stage for applying this important model system for sexual reproduction and polyploidy to dissecting the complex relationships between mito-nuclear variation, performance, plasticity, and fitness in natural populations.more » « less
An official website of the United States government
