Abstract The rapidly expanding fleet of low‐altitude CubeSats equipped with energetic particle detectors brings new opportunities for monitoring the dynamics of the radiation belt and near‐Earth plasma sheet. Despite their small sizes, CubeSats can carry state‐of‐the‐art instruments that provide electron flux measurements with finer energy resolution and broader energy coverage, compared to conventional missions such as POES satellites. The recently launched CIRBE CubeSat measures 250–6,000 keV electrons with extremely high energy resolution, however, CIRBE typically only measures locally‐trapped electrons and cannot directly measure the precipitating electrons. This work aims to develop a technique for identifying indications of nightside precipitation using the locally‐trapped electron measurements by the CIRBE CubeSat. This study focuses on two main types of drivers for nightside precipitation: electron scattering by the curvature of magnetic field lines in the magnetotail current sheet and electron scattering by resonance with electromagnetic ion cyclotron (EMIC) waves. Using energy and pitch‐angle resolved electron fluxes from the low‐altitude ELFIN CubeSat, we reveal the features that distinguish between these two precipitation mechanisms based solely on locally‐trapped flux measurements. Then we present measurements from four CIRBE orbits and demonstrate the applicability of the proposed technique to the investigation of nightside precipitation using CIRBE observations, enabling separation between precipitation induced by curvature scattering and EMIC waves in nearby regions. Our study underscores the feasibility of employing high‐energy‐resolution CIRBE measurements for detecting nightside precipitation of relativistic electrons. Additionally, we briefly discuss outstanding scientific questions about these precipitation patterns that could be addressed with CIRBE measurements.
more »
« less
Dispersed Relativistic Electron Precipitation Patterns Between the Ion and Electron Isotropy Boundaries
Abstract Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle‐latitude whistler‐mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low‐altitude ELFIN and near‐equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/L‐shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves.
more »
« less
- Award ID(s):
- 2019914
- PAR ID:
- 10480106
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 12
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electromagnetic ion cyclotron (EMIC) waves are a key plasma mode affecting radiation belt dynamics. These waves are important for relativistic electron losses through scattering and precipitation into Earth's ionosphere. Although theoretical models of such resonant scattering predict a low‐energy cut‐off of ∼1 MeV for precipitating electrons, observations from low‐altitude spacecraft often show simultaneous relativistic and sub‐relativistic electron precipitation associated with EMIC waves. Recently, nonresonant electron scattering by EMIC waves has been proposed as a possible solution to the above discrepancy. We employ this model and a large database of EMIC waves to develop a universal treatment of electron interactions with EMIC waves, including nonresonant effects. We use the Green's function approach to generalize EMIC diffusion rates foregoing the need to modify existing codes or recompute empirical wave databases. Comparison with observations from the electron losses and fields investigation mission demonstrates the efficacy of the proposed method for explaining sub‐relativistic electron losses by EMIC waves.more » « less
-
Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.more » « less
-
Abstract Resonant scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms of relativistic electron losses in Earth’s inner magnetosphere. Low‐altitude spacecraft measurements, however, often show that the energy range of precipitating electrons is wider than theoretical predictions based on the cold plasma dispersion of EMIC waves. To explain this discrepancy, we examine the diffusion rates of EMIC waves by including hot plasma effects in their dispersion relation. Using the observed ion distribution functions, we investigate the hot plasma effects on the EMIC wave dispersion for a wide frequency range. We develop analytical equations for hot plasma effects on EMIC dispersion, and apply this model to diffusion rate evaluations. We show that hot ion effects tend to increase the minimum resonant energy for the frequency range around wave intensity maxima, but can decrease the minimum resonant energy for the higher‐frequency part of wave spectra.more » « less
-
Abstract Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to theforce bunchingeffect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation.more » « less
An official website of the United States government
