skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An active learning approach to teach distributed forces using augmented reality with guided inquiry
Abstract Mastering the concept of distributed forces is vital for students who are pursuing a major involving engineering mechanics. Misconceptions related to distributed forces that are typically acquired in introductory Physics courses should be corrected to increase student success in subsequent mechanics coursework. The goal of this study was to develop and assess a guided instructional activity using augmented reality (AR) technology to improve undergraduate engineering students' understanding of distributed forces. The AR app was accompanied by a complementary activity to guide and challenge students to model objects as beams with progressively increasing difficulty. The AR tool allowed students to (a) model a tabletop as a beam with multiple distributed forces, (b) visualize the free body diagram, and (c) compute the external support reactions. To assess the effectiveness of the activity, 43 students were allocated to control and treatment groups using an experimental nonequivalent groups preactivity/postactivity test design. Of the 43 students, 35 participated in their respective activity. Students in the control group collaborated on traditional problem‐solving, while those in the treatment group engaged in a guided activity using AR. Students' knowledge of distributed forces was measured using their scores on a 10‐item test instrument. Analysis of covariance was utilized to analyze postactivity test scores by controlling for the preactivity test scores. The treatment group demonstrated a significantly greater improvement in postactivity test scores than that of the control group. The measured effect size was 0.13, indicating that 13% of the total variance in the postactivity test scores can be attributed to the activity. Though the effect size was small, the results suggest that a guided AR activity can be more effective in improving student learning outcomes than traditional problem‐solving.  more » « less
Award ID(s):
2141984
PAR ID:
10480124
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Computer Applications in Engineering Education
ISSN:
1061-3773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this paper is to provide a holistic summary of ongoing research related to the development, implementation, assessment, and continuous refinement of an augmented reality (AR) app known as Vectors in Space. This Unity-based app was created by the authors and provides a self-guided learning experience for students to learn about fundamental vector concepts routinely encountered in undergraduate physics and engineering mechanics courses. Vectors are a fundamental tool in mechanics courses as they allow for the precise and comprehensive description of physical phenomena such as forces, moments, and motion. In early engineering coursework, students often perceive vectors as an abstract mathematical concept that requires spatial visualization skills in three dimensions (3D). The app aims to allow students to build these tacit skills while simultaneously allowing them to learn fundamental vector concepts that will be necessary in subsequent coursework. Three self-paced, guided learning activities systematically address concepts that include: (a) Cartesian components of vectors, (b) unit vectors and directional angles, (c) addition, (d) subtraction, (e) cross product using the right-hand rule, (f) angle between vectors using the dot product, and (g) vector projections using the dot product. The authors first discuss the app's scaffolding approach with special attention given to the incorporation of Mayer's principles of multimedia learning as well as the use of animations. The authors' approach to develop the associated statics learning activities, practical aspects of implementation, and lessons learned are shared. The effectiveness of the activities is assessed by applying analysis of covariance (ANCOVA) to pre- and post-activity assessment scores for control and treatment groups. Though the sample sizes are relatively small (less than 50 students), the results demonstrate that AR had a positive impact on student learning of the dot product and its applications. Larger sample sizes and refinements to the test instruments will be necessary in the future to draw robust conclusions regarding the other vector topics and operations. Qualitative feedback from student focus groups conducted with undergraduate engineering students identified the app's strengths as well as potential areas of improvement. 
    more » « less
  2. Problem solving is a signature skill of engineers. Here, problem solving is employed when students apply course concepts to reverse engineer YouTube videos and solve new student-written, homework-style problems (YouTube problems). Replacing textbook problems with YouTube problems, this research focuses on examining the rigor of YouTube problems as well as students’ problem-solving skills on textbook and YouTube problems. A quasi-experimental, treatment/control group design was employed, and data was collected and evaluated using multiple measurement instruments. First, rigor of homework problems was examined using the NASA Task Load Index. Also, problem solving was assessed using a previously-developed rubric called PROCESS: Problem definition, Representing the problem, Organizing the information, Calculations, Evaluating the solution, Solution communication, and Self-assessment. PROCESS was modified to independently measure completeness and accuracy of student responses, as well as identify errors committed in material and energy balances. In the treatment group, students were assigned ten textbook problems and nine YouTube problems. While the control group obtained higher PROCESS scores at the beginning of the study, both groups exhibited similar problem-solving skills near the end. Also, the rigor of student-written YouTube problems was similar to textbook problems related to the same course concepts. 
    more » « less
  3. Problem solving is a signature skill of engineers. Incorporating videos in engineering education has potential to stimulate multi-senses and further open new ways of learning and thinking. Here, problem solving was examined on problems written by previous students that applied course concepts by reverse engineering the actions in videos. Since the videos usually come from YouTube, the student-written problems are designated YouTube problems. This research focused on examining the rigor of YouTube problems as well as students’ problem-solving skills when solving YouTube problems compared to Textbook problems. A quasi-experimental, treatment/control group design was employed, and data collected was evaluated using multiple instruments. NASA Task Load Index survey was used to collect 􏰗1200 ratings that assessed rigor of homework problems. Problem-solving ability was assessed using a previously-developed rubric with over 2600 student solutions scored. In the treatment group where students were assigned ten Textbook and nine YouTube problems, students reported an overall similarity in rigor for both YouTube and Textbook problems. Students in the treatment group displayed 􏰗6% better problem solving when completing YouTube problems compared to Textbook problems. Although higher perceptions of problem difficulty correlated with lower problem-solving ability across both groups and problem types, students in the treatment group exhibited smaller decreases in problem-solving ability as a result of increasing difficulty in the Textbook problems. Overall, student-written problems inspired by YouTube videos can easily be adapted as homework practice and possess potential benefits in enhancing students’ learning experience. Link: https://www.ijee.ie/contents/c370521.html 
    more » « less
  4. This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment of course performance is based on the well-characterized force concept inventory (FCI) exam that is administered before the intro to mechanics course and both before and after the Physics I course; and on student performance (grades) in Physics and Statics courses. Results from the FCI pre-test show that students who took the introduction to mechanics course (treatment group) started the physics course with a much better understanding of force concepts than other students in the course. The FCI post-test shows better normalized gain for the treatment group, compared to other students, which is also aligned with student performance in the course. Additionally, student performance is significantly better in statics, with 25% DWF rate compared to 50% for the other students. In summary, the framework of the course, which focuses on providing students with in-depth understanding of force concepts, has led to better learning and performance in Physics I, but importantly it has also helped students achieve better performance in the Statics course, the first fundamental course in civil and mechanical engineering programs. 
    more » « less
  5. Classroom research has demonstrated the capacity for significantly influencing student learning by engaging students in evaluation of previously submitted work as an intentional priming exercise for learning; we call this experience Learning by Evaluating (LbE). Expanding on current LbE research, we set forth to investigate the impact on student learning by intentionally differing the quality of examples evaluated by the students using adaptive comparative judgement. In this research, university design students (N = 468 students) were randomly assigned to one of three treatment groups; while each group evaluated previously collected student work as an LbE priming activity, the work evaluated by each group differed in quality. Using a three-group experimental design, one group of students only evaluated high quality examples, the second only evaluated low quality examples, and the third group of students evaluated a set of mixed-quality examples of the assignment they were about to work on. Following these LbE priming evaluations, students completed the assigned work and then their projects were evaluated to determine if there was a difference between student performance by treatment condition. Additional qualitative analysis was completed on student LbE rationales to explore similarities and differences in student cognitive judgments based on intervention grouping. No significant difference was found between the groups in terms of achievement, but several differences in group judgement approach were identified and future areas needing investigation were highlighted. 
    more » « less