skip to main content


Title: LinRace: cell division history reconstruction of single cells using paired lineage barcode and gene expression data
Abstract

Lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes in single cells, which allows for inference of cell lineage and cell types at the whole organism level. While most state-of-the-art methods for lineage reconstruction utilize only the lineage barcode data, methods that incorporate gene expressions are emerging. Effectively incorporating the gene expression data requires a reasonable model of how gene expression data changes along generations of divisions. Here, we present LinRace (Lineage Reconstruction with asymmetric cell division model), which integrates lineage barcode and gene expression data using asymmetric cell division model and infers cell lineages and ancestral cell states using Neighbor-Joining and maximum-likelihood heuristics. On both simulated and real data, LinRace outputs more accurate cell division trees than existing methods. With inferred ancestral states, LinRace can also show how a progenitor cell generates a large population of cells with various functionalities.

 
more » « less
NSF-PAR ID:
10480130
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The left–right (L–R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L–R patterning. Using single‐cell high‐resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal‐animal blastomeres of the eight‐cellXenopusembryo. Herein, we examined whether altering the distribution of some of these molecules influenced early events in L–R patterning. Using lineage tracing, we found that injecting right‐enriched metabolites into the left cell caused its descendant cells to disperse in patterns that varied from those in control gastrulae; this did not occur when left‐enriched metabolites were injected into the right cell. At later stages, injecting left‐enriched metabolites into the right cell perturbed the expression of genes known to: (a) be required for the formation of the gastrocoel roof plate (foxj1); (b) lead to the asymmetric expression of Nodal (dand5/coco); or (c) result from asymmetricalnodalexpression (pitx2). Despite these perturbations in gene expression, we did not observe heterotaxy in heart or gut looping at tadpole stages. These studies indicate that altering metabolite distribution at cleavage stages at the concentrations tested in this study impacts the earliest steps of L–R gene expression that then can be compensated for during organogenesis.

     
    more » « less
  2. Abstract

    Gene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching. Here, we develop a lineage tracing-based technique to quantify memory and identify cells that switch states. Applied to melanoma cells without therapy, we quantify long-lived fluctuations in gene expression that are predictive of later resistance to targeted therapy. We also identify the PI3K and TGF-β pathways as state switching modulators. We propose a pretreatment model, first applying a PI3K inhibitor to modulate gene expression states, then applying targeted therapy, which leads to less resistance than targeted therapy alone. Together, we present a method for finding modulators of gene expression memory and their associated cell fates.

     
    more » « less
  3. Abstract Background

    Single-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each. However, these methods are computationally costly and ignore the substantial correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose challenges for traditional models based on Gaussian assumptions.

    Results

    We aim to resolve these issues by developing a reduced-rank regression model that identifies low-dimensional linear associations between a large number of cell-specific covariates and high-dimensional gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to account for the unique structure of scRNA-seq counts. We demonstrate the performance of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct analyses.

    Conclusion

    We show that our statistical modeling approach, which is based on reduced-rank regression, captures associations between gene expression and cell- and sample-specific covariates by leveraging low-dimensional representations of transcriptional states.

     
    more » « less
  4. Summary

    In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryoin vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensorin vitrois highly similar to its undisturbedin vivocounterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, bothin vivoandin vitro,after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two‐celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryoin vivois actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage.

     
    more » « less
  5. Abstract

    Multipotent stem and progenitor cells have the capacity to generate a limited array of related cell types. The Caenorhabditis elegans somatic gonadal precursors are multipotent progenitors that generate all 143 cells of the somatic gonad, including complex tissues and specialized signaling cells. To screen for candidate regulators of cell fate and multipotency, we identified transcription factor genes with higher expression in somatic gonadal precursors than in their differentiated sister, the head mesodermal cell. We used RNA interference or genetic mutants to reduce the function of 183 of these genes and examined the worms for defects in the somatic gonadal precursor cell fate or the ability to generate gonadal tissue types. We identify 8 genes that regulate somatic gonadal precursor fate, including the SWI/SNF chromatin remodeling complex gene swsn-3 and the Ci/GLI homolog tra-1, which is the terminal regulator of sex determination. Four genes are necessary for somatic gonadal precursors to generate the correct number and type of descendant cells. We show that the E2F homolog, efl-3, regulates the cell fate decision between distal tip cells and the sheath/spermathecal precursor. We find that the FACT complex gene hmg-4 is required for the generation of the correct number of somatic gonadal precursor descendants, and we define an earlier role for the nhr-25 nuclear hormone receptor-encoding gene, in addition to its previously described role in regulating the asymmetric division of somatic gonadal precursors. Overall, our data show that genes regulating cell fate are largely different from genes regulating developmental potential, demonstrating that these processes are genetically separable.

     
    more » « less