skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The utility of mechanical objects: Aiding students' learning of abstract and difficult engineering concepts
Abstract BackgroundUndergraduate students consistently struggle with mastering concepts related to thermodynamics. Prior work has shown that haptic technology and intensive hands‐on workshops help improve learning outcomes relative to traditional lecture‐based thermodynamics instruction. The current study takes a more feasible approach to improving thermal understanding by incorporating simple mechanical objects into individual problem‐solving exercises. Purpose/HypothesesThis study tests the impact of simple mechanical objects on learning outcomes (specifically, problem‐solving performance and conceptual understanding) for third‐year undergraduate engineering students in a thermodynamics course across a semester. Design/MethodDuring the semester, 119 engineering students in two sections of an undergraduate thermodynamics course completed three 15‐min, self‐guided problem‐solving tasks, one section without and the other with a simple and relevant physical object. Performance on the tasks and improvements in thermodynamics comprehension (measured via Thermal and Transport Concept Inventory scores) were compared between the two sections. ResultsStudents who had a simple, relevant object available to solve three thermodynamics problems consistently outperformed their counterparts without objects, although only to statistical significance when examining the simple effects for the third problem. At the end of the semester, students who had completed the tasks with the objects displayed significantly greater improvements in thermodynamics comprehension than their peers without the relevant object. Higher mechanical aptitude facilitated the beneficial effect of object availability on comprehension improvements. ConclusionFindings suggest that the incorporation of simple mechanical objects into active learning exercises in thermodynamics curricula could facilitate student learning in thermodynamics and potentially other abstract domains.  more » « less
Award ID(s):
1763477
PAR ID:
10480143
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
113
Issue:
1
ISSN:
1069-4730
Format(s):
Medium: X Size: p. 124-142
Size(s):
p. 124-142
Sponsoring Org:
National Science Foundation
More Like this
  1. STEM undergraduate instructors teaching remote courses often use traditional lecture-based instruction, despite evidence that active learning methods improve student engagement and learning outcomes. One simple way to use active learning online is to incorporate exploratory learning. In exploratory learning, students explore a novel activity (e.g., problem solving) before a lecture on the underlying concepts and procedures. This method has been shown to improve learning outcomes during in-person courses, without requiring the entire course to be restructured. The current study examined whether the benefits of exploratory learning extend to a remote undergraduate physics lesson, taught synchronously online. Undergraduate physics students (N = 78) completed a physics problem-solving activity either before instruction (explore-first condition) or after (instruct-first condition). Students then completed a learning assessment of the problem-solving procedures and underlying concepts. Despite lower accuracy on the learning activity, students in the explore-first condition demonstrated better understanding on the assessment, compared to students in the instruct-first condition. This finding suggests that exploratory learning can serve as productive failure in online courses, challenging students but improving learning, compared to the more widely-used lecture-then-practice method. 
    more » « less
  2. Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise. 
    more » « less
  3. Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise. 
    more » « less
  4. Abstract BackgroundRecent engineering education research has found improved learning outcomes when instructors engage students actively (e.g., through practice problems) rather than passively (e.g., in lectures). As more instructors shift toward active learning, research needs to identify how different types of activities affect students' cognitive engagement with concepts in the classroom. In this study, we investigate the effects of prompting novice students to draw when solving problems, a professional practice of engineers. PurposeWe investigate whether implementing instructional prompts to draw in an active learning classroom (a) increases students' use and value of drawing as a problem‐solving strategy and (b) enhances students' problem‐solving performance. MethodWe compared survey data and exam scores collected in one undergraduate class that received prompts to draw in video lectures and in‐class problems (drawing condition) and one class that received no drawing prompts (control condition). ResultsAfter drawing prompts were implemented, students' use and value of drawing increased, and these effects persisted to the end of the semester. Students were more likely to draw when provided drawing prompts. Furthermore, students who received prompts outperformed students who did not on exam questions that target conceptual understanding. ConclusionsOur findings reveal how implementing drawing prompts in an active learning classroom may help students engage in drawing and solve problems conceptually. This study contributes to our understanding of what types of active learning activities can improve instructional practices in engineering education. Particularly, we show how prompts that foster authentic engineering practices can increase cognitive engagement in introductory‐level engineering courses. 
    more » « less
  5. Abstract BackgroundCivil engineers design systems that have the potential to impact existing oppressive societal conditions. Critical action—the ability to recognize and act against oppressive conditions—is an obligation for civil engineers committed to building a more just world. Purpose/HypothesisHistory reveals that civil engineers often do not take critical action and accrediting bodies (e.g., ABET) have responded by creating requirements to consider social factors and contexts. Considering these endeavors, we ask: To what extent do civil engineering students demonstrate critical action attitudes when prompted by engineering problem‐solving? In what ways does culturally relevant problem‐solving influence critical action attitudes? Design/MethodEmploying transformative action as a theoretical framework, we assessed students' responses to a design question on three levels that perpetuate or disrupt oppression (avoidant, destructive, and critical action). The empirical study used qualitative and quantitative analysis to examine survey responses of 375 civil engineering undergraduate students across 12 US universities. ResultsThe results showed that engineering students largely avoided discussing taking critical action, remaining focused on technical and nontechnical factors that evaded acknowledgement of sociopolitical factors. Nevertheless, when exposed to culturally relevant problem‐solving, students showed a statistically significant increase in both critical and destructive action responses. ConclusionsWe posit that students' exposure to culturally relevant problem‐solving can enhance students' critical action attitudes. The results call on the need for civil engineering educators to cultivate culturally relevant problem‐solving in civil engineering curriculum. 
    more » « less