skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pyrovskite: A software package for the high-throughput construction, analysis, and featurization of two- and three-dimensional perovskite systems
The increased computational and experimental interest in perovskite systems comprising novel phases and reduced dimensionality has greatly expanded the search space for this class of materials. In similar fields, unified frameworks exist for the procedural generation and subsequent analysis of these complex condensed matter systems. Given the relatively recent rise in popularity of these novel perovskite phases, such a framework is yet to be created. In this work, we introduce Pyrovskite, an open source software package, to aid in both the high-throughput and fine-grained generation, simulation, and subsequent analysis of this expanded family of perovskite systems. Additionally, we introduce a new descriptor for octahedral distortions in systems, including, but not limited to, perovskites. This descriptor quantifies diagonal displacements of the B-site cation in a BX6 octahedral coordination environment, which has been shown to contribute to increased Rashba–Dresselhaus splitting in perovskite systems.  more » « less
Award ID(s):
2138728
PAR ID:
10480152
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
6
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A high‐throughput computational framework to identify novel multinary perovskite redox mediators is presented, and this framework is applied to discover the Gd‐containing perovskite oxide compositions Gd2BB′O6,GdA′B2O6, and GdA′BB′O6that split water. The computational scheme uses a sequence of empirical approaches to evaluate the stabilities, electronic properties, and oxygen vacancy thermodynamics of these materials, including contributions to the enthalpies and entropies of reduction, ΔHTRand ΔSTR. This scheme uses the machine‐learned descriptor τ to identify compositions that are likely stable as perovskites, the bond valence method to estimate the magnitude and phase of BO6octahedral tilting and provide accurate initial estimates of perovskite geometries, and density functional theory including magnetic‐ and defect‐sampling to predict STCH‐relevant properties. Eighty‐three promising STCH candidate perovskite oxides down‐selected from 4392 Gd‐containing compositions are reported, three of which are referred to experimental collaborators for characterization and exhibit STCH activity. The results demonstrate that the high‐throughput computational scheme described herein—which is used to evaluate Gd‐containing compositions but can be applied to any multinary perovskite oxide compositional space(s) of interest—accelerates the discovery of novel STCH active redox mediators with reasonable computational expense. 
    more » « less
  2. Conversion of CO 2 in a scalable technology has the potential for enormous energy and environmental impact but remains a challenge. We present several stable, earth abundant perovskite oxide materials for the reverse water gas shift chemical looping (RWGS-CL) process as a potential solution for this CO 2 mitigation problem. This material and process combination circumvents issues plaguing other emerging technologies, viz. poor rates of CO 2 conversion, high operation temperatures, use of precious metal catalysts, or combinations thereof. Using DFT-calculated oxygen vacancy formation energy, a key descriptor for the RWGS-CL process, we have successfully predicted several earth abundant perovskite oxides with high CO 2 conversion capability. We simultaneously achieved 100% selective CO generation from CO 2 at the highest known rates (∼160 μmoles per min per gram perovskite oxide) at record low process temperatures of 450–500 °C using lanthanum and calcium based perovskite oxides. These materials are stable over several RWGS-CL cycles, enabling industrial implementation. 
    more » « less
  3. The management and analysis of large in silico molecular libraries is pivotal in many areas of modern chemistry. The adoption and success of data-oriented approaches to chemical research is dependent on the ease of handling large collections of in silico molecular structures in a programmatic way. Herein, we introduce the MOLecular LIibrary toolkit, “molli”, which is a Python 3 chemoinformatics module that provides a streamlined interface for manipulating large in silico libraries. Three-dimensional, combinatorial molecule libraries can be expanded directly from two-dimensional chemical structure fragments stored in CDXML files with high stereochemical fidelity. Geometry optimization, property calculation, and conformer generation are executed by interfacing with widely used computational chemistry programs such as OpenBabel, RDKit, ORCA, and xTB/CREST. Conformer-dependent grid-based feature calculators provide numerical representation suitable for diversity analysis, and interface to robust three-dimensional visualization tools provide comprehensive images to enhance human understanding of libraries with thousands of members. The package includes command-line interface in addition to Python classes to streamline frequently used workflows. This work describes the development and implementation of molli 1.0 and highlights the available functionality. Parallel performance is benchmarked on various hardware platforms and common workflows are demonstrated for different tasks ranging from optimized grid-based descriptor calculation on catalyst libraries to NMR prediction workflow from CDXML files. 
    more » « less
  4. Abstract Solid‐oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure–property relationships that would enable the rational design of better materials. Here, using epitaxial thin‐film growth, synchrotron radiation, impedance spectroscopy, and density‐functional theory, the impact of structural parameters (i.e., unit‐cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9Sr0.1Ga0.95Mg0.05O3–δ. As compared to the zero‐strain state, compressive strain reduces the unit‐cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit‐cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit‐cell volumes and octahedral rotations decrease migration barriers and create low‐energy migration pathways, respectively. The desired combination of large unit‐cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit‐cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion‐conducting perovskite electrolytes. 
    more » « less
  5. Perovskite oxide heterostructures host a large number of interesting phenomena such as ferroelectricity, which are often driven by octahedral distortions in the crystal that may induce polarization. SrHfO3 (SHO) is a perovskite oxide with a pseudocubic lattice parameter of 4.08 Å that previous density functional theory (DFT) calculations suggest can be stabilized in a ferroelectric P4mm phase when stabilized with sufficient compressive strain. Additionally, it is insulating and possesses a large band gap and a high dielectric constant, making it an ideal candidate for oxide electronic devices. To test the viability of epitaxial strain as a driver of ferroic phase transitions, SHO films were grown by hybrid molecular beam epitaxy (hMBE) with a tetrakis(ethylmethylamino)hafnium(IV) source on GdScO3 and TbScO3 substrates. Strained SHO phases were characterized using X-ray diffraction, X-ray absorption spectroscopy, and scanning transmission electron microscopy to determine the space group of the strained films, with the results compared to those of DFT-optimized models of phase stability versus strain. Contrary to past reports, we find that compressively strained SrHfO3 undergoes octahedral tilt distortions without associated ferroelectric polarization and most likely takes on the I4/mcm phase with the a0a0c– tilt pattern. 
    more » « less