skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2138728

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increased computational and experimental interest in perovskite systems comprising novel phases and reduced dimensionality has greatly expanded the search space for this class of materials. In similar fields, unified frameworks exist for the procedural generation and subsequent analysis of these complex condensed matter systems. Given the relatively recent rise in popularity of these novel perovskite phases, such a framework is yet to be created. In this work, we introduce Pyrovskite, an open source software package, to aid in both the high-throughput and fine-grained generation, simulation, and subsequent analysis of this expanded family of perovskite systems. Additionally, we introduce a new descriptor for octahedral distortions in systems, including, but not limited to, perovskites. This descriptor quantifies diagonal displacements of the B-site cation in a BX6 octahedral coordination environment, which has been shown to contribute to increased Rashba–Dresselhaus splitting in perovskite systems. 
    more » « less