In many animals, the germline differentiates early in embryogenesis, so only mutations that accumulate in germ cells are inherited by offspring. Exceptions to this developmental process may indicate other mechanisms have evolved to limit the effects of deleterious mutation accumulation. Stony corals are animals that can live for hundreds of years and have been thought to produce gametes from somatic tissue. To clarify conflicting evidence about germline-soma distinction in corals, we sequenced high coverage, full genomes with technical replicates for parent coral branches and their sperm pools. We identified post-embryonic single nucleotide variants (SNVs) unique to each parent branch, then checked if each SNV was shared by the respective sperm pool. Twenty-six per cent of post-embryonic SNVs were shared by the sperm and 74% were not. We also identified germline SNVs, those that were present in the sperm but not in the parent. These data suggest that self-renewing stem cells differentiate into germ and soma throughout the adult life of the colony, with SNV rates and patterns differing markedly in stem, soma and germ lineages. In addition to informing the evolution of germlines in metazoans, these insights inform how corals may generate adaptive diversity necessary in the face of global climate change.
more »
« less
Inheritance of somatic mutations by animal offspring
Since 1892, it has been widely assumed that somatic mutations are evolutionarily irrelevant in animals because they cannot be inherited by offspring. However, some nonbilaterians segregate the soma and germline late in development or never, leaving the evolutionary fate of their somatic mutations unknown. By investigating uni- and biparental reproduction in the coralAcropora palmata(Cnidaria, Anthozoa), we found that uniparental, meiotic offspring harbored 50% of the 268 somatic mutations present in their parent. Thus, somatic mutations accumulated in adult coral animals, entered the germline, and were passed on to swimming larvae that grew into healthy juvenile corals. In this way, somatic mutations can increase allelic diversity and facilitate adaptation across habitats and generations in animals.
more »
« less
- Award ID(s):
- 1848671
- PAR ID:
- 10480161
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 8
- Issue:
- 35
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rate and spectrum of somatic mutations can diverge from that of germline mutations. This is because somatic tissues experience different mutagenic processes than germline tissues. Here, we use nanorate sequencing (NanoSeq) to identify somatic mutations in Arabidopsis shoots with high sensitivity. We report a somatic mutation rate of 3.6x10^-8 mutations/bp, ~4-5x the germline mutation rate. Somatic mutations displayed elevated signatures consistent with oxidative damage, UV damage, and transcription-coupled nucleotide excision repair. Both somatic and germline mutations were enriched in transposable elements and depleted in genes, but this depletion was greater in germline mutations. Somatic mutation rate correlated with proximity to the centromere, DNA methylation, chromatin accessibility, and gene/TE content, properties which were also largely true of germline mutations. We note DNA methylation and chromatin accessibility have different predicted effects on mutation rate for genic and non-genic regions; DNA methylation associates with a greater increase in mutation rate when in non-genic regions, and accessible chromatin associates with a lower mutation rate in non-genic regions but a higher mutation rate in genic regions. Together, these results characterize key differences and similarities in the genomic distribution of somatic and germline mutations.more » « less
-
The unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations.more » « less
-
Abstract The unique life form of plants promotes the accumulation of somatic mutations that can be passed to offspring in the next generation, because the same meristem cells responsible for vegetative growth also generate gametes for sexual reproduction. However, little is known about the consequences of somatic mutation accumulation for offspring fitness. We evaluate the fitness effects of somatic mutations in Mimulus guttatus by comparing progeny from self-pollinations made within the same flower (autogamy) to progeny from self-pollinations made between stems on the same plant (geitonogamy). The effects of somatic mutations are evident from this comparison, as autogamy leads to homozygosity of a proportion of somatic mutations, but progeny from geitonogamy remain heterozygous for mutations unique to each stem. In two different experiments, we find consistent fitness effects of somatic mutations from individual stems. Surprisingly, several progeny groups from autogamous crosses displayed increases in fitness compared to progeny from geitonogamy crosses, likely indicating that beneficial somatic mutations occurred in some stems. These results support the hypothesis that somatic mutations accumulate during vegetative growth, but they are filtered by different forms of selection that occur throughout development, resulting in the culling of expressed deleterious mutations and the retention of beneficial mutations.more » « less
-
Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits – RPA1, RPA2, and RPA3. Germline pathogenic variants affectingRPA1were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germlineRPA1mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germlineRPA1,RPA2, andRPA3variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novelRPA1, but notRPA2orRPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affectingRPA1are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.more » « less
An official website of the United States government

