skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: KIT: Testing OS-Level Virtualization for Functional Interference Bugs
Container isolation is implemented through OS-level virtualization, such as Linux namespaces. Unfortunately, these mechanisms are extremely challenging to implement correctly and, in practice, suffer from functional interference bugs, which compromise container security. In particular, functional interference bugs allow an attacker to extract information from another container running on the same machine or impact its integrity by modifying kernel resources that are incorrectly isolated. Despite their impact, functional interference bugs in OS-level virtualization have received limited attention in part due to the challenges in detecting them. Instead of causing memory errors or crashes, many functional interference bugs involve hard-to-catch logic errors that silently produce semantically incorrect results. This paper proposes KIT, a dynamic testing framework that discovers functional interference bugs in OS-level virtualization mechanisms, such as Linux namespaces. The key idea of KIT is to detect inter-container functional interference by comparing the system call traces of a container across two executions, where it runs with and without the preceding execution of another container. To achieve high efficiency and accuracy, KIT includes two critical components: an efficient algorithm to generate test cases that exercise inter-container data flows and a system call trace analysis framework that detects functional interference bugs and clusters bug reports. KIT discovered 9 functional interference bugs in Linux kernel 5.13, of which 6 have been confirmed. All bugs are caused by logic errors, showing that this approach is able to detect hard-to-catch semantic bugs.  more » « less
Award ID(s):
2145888 2140305
PAR ID:
10480225
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ASPLOS 2023: Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2
ISBN:
9781450399166
Page Range / eLocation ID:
427 to 441
Format(s):
Medium: X
Location:
Vancouver BC Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Indirect function calls are widely used in building system software like OS kernels for their high flexibility and performance. Statically resolving indirect-call targets has been known to be a hard problem, which is a fundamental requirement for various program analysis and protection tasks. The state-of-the-art techniques, which use type analysis, are still imprecise. In this paper, we present a new approach, TFA, that precisely identifies indirect-call targets. The intuition behind TFA is that type-based analysis and data-flow analysis are inherently complementary in resolving indirect-call targets. TFA incorporates a co-analysis system that makes the best use of both type information and data-flow information. The co-analysis keeps refining the global call graph iteratively, allowing us to achieve an optimal indirect call analysis. We have implemented TFA in LLVM and evaluated it against five famous large-scale programs. The experimental results show that TFA eliminates additional 24% to 59% of indirect-call targets compared with the state-of-the-art approaches, without introducing new false negatives. With the precise indirect-call analysis, we further developed a strengthened fine-grained forward-edge control-flow integrity scheme and applied it to the Linux kernel. We have also used the refined indirect-call analysis results in bug detection, where we found 8 deep bugs in the Linux kernel. As a generic technique, the precise indirect-call analysis of TFA can also benefit other applications such as compiler optimization and software debloating. 
    more » « less
  2. Kernel use-after-free (UAF) bugs are severe threats to system security due to their complex root causes and high exploitability. We find that 36.1% of recent kernel UAF bugs are caused by improper uses of reference counters, dubbed refcount-related UAF bugs. Current kernel fuzzing tools based on code coverage can detect common memory errors, but none of them is aware of the root cause. As a consequence, they only trigger refcount-related UAF bugs passively and coincidentally, and may miss many deep hidden vulnerabilities. To actively trigger refcount-related UAF bugs, in this paper, we propose CountDown, a novel refcount-guided kernel fuzzer. CountDown collects diverse refcount operations from kernel executions and reshapes syscall relations based on commonly accessed refcounts. When generating user-space programs, CountDown prefers to combine syscalls that ever access the same refcounts, aiming to trigger complex refcount behaviors. It also injects refcount-decreasing and refcount-accessing syscalls to intentionally free the refcounted object and trigger invalid accesses through dangling pointers. We test CountDown on mainstream Linux kernels and compare it with popular fuzzers. On average, our tool can detect 66.1% more UAF bugs and 32.9% more KASAN reports than state-of-the-art tools. CountDown has found nine new kernel memory bugs, where two are fixed and one is confirmed. 
    more » « less
  3. Commodity operating system (OS) kernels, such as Windows, Mac OS X, Linux, and FreeBSD, are susceptible to numerous security vulnerabilities. Their monolithic design gives successful attackers complete access to all application data and system resources. Shielding systems such as InkTag, Haven, and Virtual Ghost protect sensitive application data from compromised OS kernels. However, such systems are still vulnerable to side-channel attacks. Worse yet, compromised OS kernels can leverage their control over privileged hardware state to exacerbate existing side channels; recent work has shown that a compromised OS kernel can steal entire documents via side channels. This paper presents defenses against page table and last-level cache (LLC) side-channel attacks launched by a compromised OS kernel. Our page table defenses restrict the OS kernel’s ability to read and write page table pages and defend against page allocation attacks, and our LLC defenses utilize the Intel Cache Allocation Technology along with memory isolation primitives. We proto- type our solution in a system we call Apparition, building on an optimized version of Virtual Ghost. Our evaluation shows that our side-channel defenses add 1% to 18% (with up to 86% for one application) overhead to the optimized Virtual Ghost (relative to the native kernel) on real-world applications. 
    more » « less
  4. Highly-configurable software underpins much of our computing infrastructure. It enables extensive reuse, but opens the door to broken configuration specifications. The configuration specification language, Kconfig, is designed to prevent invalid configurations of the Linux kernel from being built. However, the astronomical size of the configuration space for Linux makes finding specification bugs difficult by hand or with random testing. In this paper, we introduce a software model checking framework for building Kconfig static analysis tools. We develop a formal semantics of the Kconfig language and implement the semantics in a symbolic evaluator called kclause that models Kconfig behavior as logical formulas. We then design and implement a bug finder, called kismet, that takes kclause models and leverages automated theorem proving to find unmet dependency bugs. kismet is evaluated for its precision, performance, and impact on kernel development for a recent version of Linux, which has over 140,000 lines of Kconfig across 28 architecture-specific specifications. Our evaluation finds 781 bugs (151 when considering sharing among Kconfig specifications) with 100% precision, spending between 37 and 90 minutes for each Kconfig specification, although it misses some bugs due to underapproximation. Compared to random testing, kismet finds substantially more true positive bugs in a fraction of the time. 
    more » « less
  5. High development velocity is critical for modern systems. This is especially true for Linux file systems which are seeing increased pressure from new storage devices and new demands on storage systems. However, high velocity Linux kernel development is challenging due to the ease of introducing bugs, the difficulty of testing and debugging, and the lack of support for redeployment without service disruption. Existing approaches to high-velocity development of file systems for Linux have major downsides, such as the high performance penalty for FUSE file systems, slowing the deployment cycle for new file system functionality. We propose Bento, a framework for high velocity development of Linux kernel file systems. It enables file systems written in safe Rust to be installed in the Linux kernel, with errors largely sandboxed to the file system. Bento file systems can be replaced with no disruption to running applications, allowing daily or weekly upgrades in a cloud server setting. Bento also supports userspace debugging. We implement a simple file system using Bento and show that it performs similarly to VFS-native ext4 on a variety of benchmarks and outperforms a FUSE version by 7x on 'git clone'. We also show that we can dynamically add file provenance tracking to a running kernel file system with only 15ms of service interruption. 
    more » « less