skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short range order structrures of lithium oxy-thiosilicophosphate glasses
In this work, the compositional series of sulfide and mixed oxysulfide (MOS) glasses 0.56Li2S + 0.44[(0.33-x)PS5/2 + xPO5/2 + 0.67SiS2] was prepared, where 0 ≤ x ≤ 0.33, and their short range order (SRO) structures and their thermal properties have been investigated. Powder x-ray diffraction (XRD) confirmed that the MOS glasses were free from crystallization, with only very minor diffraction peaks in the x = 0 glass being observed. Fourier transform infrared (FT-IR), Raman, and 29Si and 31P magic angle spinning (MAS) NMR spectroscopies were used to identify the SRO structures present in these glasses. These spectra revealed oxygen migration from P to Si during synthesis. Although oxygen was introduced in the form of phosphorus oxide, the majority of the oxygen in these glasses ends up being bonded to silicon, thereby creating sulfur-rich SROs centered by phosphorus and MOS SROs centered by silicon. It was further found that the P-S SRO species were predominantly charged non-bridging sulfurs (NBS). The Si SRO species were comprised of neutral bridging oxygens (BOs) and charged non-bridging oxygens (NBOs) and neutral bridging sulfurs (BS) and charged non-bridging sulfurs with the neutral BO and BS species being larger in fraction than the NBO and NBS. These results suggest that the preponderance of the mobile Li+ cations in these glasses are located near the more negatively charged P centers and not near the more neutrally charged Si centers. The average negative charge of the P SRO structures was found to be ∼ − 3.0 with ∼97% of the phosphorous species in the P0 SRO while the average negative charge of the Si SRO structures was found to be −2.3. Consistent with the creation of the large numbers of NBS on the P and more BOs and BSs on the Si, these values are more negative and more positive, respectively, than the compositionally expected average value of −2.55. Differential scanning calorimetry (DSC) measurements of their glass transition (Tg) and crystallization (Tc) temperatures showed that the Tgs of these glasses are higher than 300 °C and their working ranges, ΔT ≡ Tc – Tg, are ∼100 °C.  more » « less
Award ID(s):
2117445 1936913
PAR ID:
10480267
Author(s) / Creator(s):
; ;
Editor(s):
Liping Huang; Lina Hu; Barrett Potter; Edgar Dutra Zanotto
Publisher / Repository:
Journal of Non-Crystalline Solids
Date Published:
Journal Name:
Journal of Non-Crystalline Solids: X
Volume:
19
Issue:
C
ISSN:
2590-1591
Page Range / eLocation ID:
100198
Subject(s) / Keyword(s):
MOS glass, Sulfide glass, SRO structure, Raman, FT-IR, MAS NMR
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The temperature-dependent layer-resolved structure of 3 to 44 unit cell thick SrRuO3 (SRO) films grown on Nb-doped SrTiO3 substrates is investigated using a combination of high-resolution synchrotron x-ray diffraction and high-resolution electron microscopy to understand the role that structural distortions play in suppressing ferromagnetism in ultra-thin SRO films. The oxygen octahedral tilts and rotations and Sr displacements characteristic of the bulk orthorhombic phase are found to be strongly dependent on temperature, the film thickness, and the distance away from the film–substrate interface. For thicknesses, t, above the critical thickness for ferromagnetism (t > 3 uc), the orthorhombic distortions decrease with increasing temperature above TC. Below TC, the structure of the films remains constant due to the magneto-structural coupling observed in bulk SRO. The orthorhombic distortions are found to be suppressed in the 2–3 interfacial layers due to structural coupling with the SrTiO3 substrate and correlate with the critical thickness for ferromagnetism in uncapped SRO films. 
    more » « less
  2. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
  3. Abstract Surface interrogation scanning electrochemical microscopy (SI‐SECM) of two electrodeposited manganese‐based electrocatalysts, amorphous MnOxand perovskite CaMnO3, was used to investigate the manganese oxidation state relating to the oxygen evolution reaction (OER) under neutral conditions. The results indicate the amounts of MnIIIand MnIVspecies in MnOxand CaMnO3depend on potential. A MnVspecies was identified in both structures during the OER. Time‐delay titration of MnVfurther revealed that MnOxproduced two types of active sites with different OER reaction rates:k′fast(MnOx)=1.21 s−1andk’slow(MnOx)=0.24 s−1. In contrast, CaMnO3perovskites in which the MnVspecies formed at a less positive potential than that in MnOx, displayed only one kinetic behavior with a faster reaction rate of 1.72 s−1
    more » « less
  4. Abstract With the goal of generating anionic analogues to MN2S2⋅Mn(CO)3Br we introduced metallodithiolate ligands, MN2S22−prepared from the Cys‐X‐Cys biomimetic, ema4−ligand (ema=N,N′‐ethylenebis(mercaptoacetamide); M=NiII, [VIV≡O]2+and FeIII) to Mn(CO)5Br. An unexpected, remarkably stable dimanganese product, (H2N2(CH2C=O(μ‐S))2)[Mn(CO)3]2resulted from loss of M originally residing in the N2S24−pocket, replaced by protonation at the amido nitrogens, generating H2ema2−. Accordingly, the ema ligand has switched its coordination mode from an N2S24−cavity holding a single metal, to a binucleating H2ema2−with bridging sulfurs and carboxamide oxygens within Mn‐μ‐S‐CH2‐C‐O, 5‐membered rings. In situ metal‐templating by zinc ions gives quantitative yields of the Mn2product. By computational studies we compared the conformations of “linear” ema4−to ema4−frozen in the “tight‐loop” around single metals, and to the “looser” fold possible for H2ema2−that is the optimal arrangement for binucleation. XRD molecular structures show extensive H‐bonding at the amido‐nitrogen protons in the solid state. 
    more » « less
  5. null (Ed.)
    The origin in deshielding of 29 Si NMR chemical shifts in R 3 Si–X, where X = H, OMe, Cl, OTf, [CH 6 B 11 X 6 ], toluene, and O X (O X = surface oxygen), as well as i Pr 3 Si + and Mes 3 Si + were studied using DFT methods. At the M06-L/6-31G(d,p) level of theory the geometry optimized structures agree well with those obtained experimentally. The trends in 29 Si NMR chemical shift also reproduce experimental trends; i Pr 3 Si–H has the most shielded 29 Si NMR chemical shift and free i Pr 3 Si + or isolable Mes 3 Si + have the most deshielded 29 Si NMR chemical shift. Natural localized molecular orbital (NLMO) analysis of the contributions to paramagnetic shielding ( σ p ) in these compounds shows that Si–R (R = alkyl, H) bonding orbitals are the major contributors to deshielding in this series. The Si–R bonding orbitals are coupled to the empty p-orbital in i Pr 3 Si + or Mes 3 Si + , or to the orbital in R 3 Si–X. This trend also applies to surface bound R 3 Si–O X . This model also explains chemical shift trends in recently isolated t Bu 2 SiH 2 + , t BuSiH 2 + , and SiH 3 + that show more shielded 29 Si NMR signals than R 3 Si + species. There is no correlation between isotropic 29 Si NMR chemical shift and charge at silicon. 
    more » « less