skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The need to include wild foods in climate change adaptation strategies
Declining wild food use has been reported around the world for decades, with important implications for nutrition and well-being. Commonly listed threats include land-use change and overharvesting. Climate change acts to compound these. Herein, we examine the importance of wild foods around the world and the impact of climate change on wild food species. We highlight large variations between regions, both in terms of climate impacts on wild foods and their importance. The emerging evidence suggests that, in addition to the Arctic, arid regions (such as the Sahel region of West Africa) and mountain regions (such as the Himalayas) may be particularly vulnerable to the impact of climate change on wild foods. We conclude with a reflection on the role of wild foods in climate change adaptation strategies and the ways that climate change adaptation strategies could threaten or enhance availability and accessibility to wild foods.  more » « less
Award ID(s):
1927827
PAR ID:
10480270
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current Opinion in Environmental Sustainability
Volume:
63
Issue:
C
ISSN:
1877-3435
Page Range / eLocation ID:
101302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Food insecurity is a perennial problem in much of the developing world, with gains against hunger backsliding in recent years and climate change predicted to accelerate this trend. Food insecurity is highly disruptive to rural livelihoods and can lead to dramatic shifts in food production strategies and resultant land use. However, studies to date have yet to outline the overarching patterns of land use change that can result from food insecurity. We elucidate the impact of food insecurity events between 2013 and 2020 in 25 low- and middle-income countries on resulting land use change and demographics. Using propensity score matching, we create a counterfactual and assess changes in forest cover, crop cover, population and nighttime luminosity between regions that experience food insecurity and comparable food-secure regions. Land use change theory, specifically the classical trajectories of agricultural intensification, land rent theory, and regime shifts help to explain observed land use trajectories. We find that food insecurity events lead to around a 4 % decline in population and a 3 % decline in cropped areas, alongside a 4 % increase in forest cover compared to control regions. Additionally, we show that drought-driven food insecurity drives impacts on land use and conflict-driven food insecurity shows greater impacts on population and nighttime luminosity. Food insecurity shocks result in an increase in population and crop cover in urban areas despite losses in adjoining rural land, suggesting that food insecurity drives local rural to urban migration. Furthermore, by assessing the impacts of discrete food insecurity events in three countries, we find that regional contexts mediate impacts by producing variable land use change trajectories. 
    more » « less
  2. ABSTRACT Fermented foods provide novel ecological opportunities for natural populations of microbes to evolve through successive recolonization of resource-rich substrates. Comparative genomic data have reconstructed the evolutionary histories of microbes adapted to food environments, but experimental studies directly demonstrating the process of domestication are lacking for most fermented food microbes. Here, we show that during adaptation to cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to produce domesticated phenotypes with properties similar to those of the industrial cultures used to make Camembert and other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium strains serially passaged on cheese had reduced pigment, spore, and mycotoxin production. Domesticated strains also had a striking change in volatile metabolite production, shifting from production of earthy or musty volatile compounds (e.g., geosmin) to fatty and cheesy volatiles (e.g., 2-nonanone, 2-undecanone). RNA sequencing demonstrated a significant decrease in expression of 356 genes in domesticated strains, with an enrichment of many secondary metabolite production pathways in these downregulated genes. By manipulating the presence of neighboring microbial species and overall resource availability, we demonstrate that the limited competition and high nutrient availability of the cheese environment promote rapid trait evolution of Penicillium molds. IMPORTANCE Industrial cultures of filamentous fungi are used to add unique aesthetics and flavors to cheeses and other microbial foods. How these microbes adapted to live in food environments is generally unknown as most microbial domestication is unintentional. Our work demonstrates that wild molds closely related to the starter culture Penicillium camemberti can readily lose traits and quickly shift toward producing desirable aroma compounds. In addition to experimentally demonstrating a putative domestication pathway for P. camemberti , our work suggests that wild Penicillium isolates could be rapidly domesticated to produce new flavors and aesthetics in fermented foods. 
    more » « less
  3. Abstract Climate change is intensifying the frequency and severity of extreme events, posing challenges to food security. Corn, a staple crop for billions, is particularly vulnerable to heat stress, a primary driver of yield variability. While many studies have examined the climate impact on average corn yields, little attention has been given to the climate impact on production volatility. This study investigates the future volatility and risks associated with global corn supply under climate change, evaluating the potential benefits of two key adaptation strategies: irrigation and market integration. A statistical model is employed to estimate corn yield response to heat stress and utilize NEX-GDDP-CMIP6 climate data to project future production volatility and risks of substantial yield losses. Three metrics are introduced to quantify these risks: Sigma (σ), the standard deviation of year-on-year yield change, which reflects overall yield volatility; Rho (ρ), the risk of substantial loss, defined as the probability of yield falling below a critical threshold; and beta (β), a relative risk coefficient that captures the volatility of a region’s corn production compared to the globally integrated market. The analysis reveals a concerning trend of increasing year-on-year yield volatility (σ) across most regions and climate models. This volatility increase is significant for key corn-producing regions like Brazil and the United States. While irrigated corn production exhibits a smaller rise in volatility, suggesting irrigation as a potential buffer against climate change impacts, it is not a sustainable option as it can cause groundwater depletion. On the other hand, global market integration reduces overall volatility and market risks significantly with less sustainability concerns. These findings highlight the importance of a multidimensional approach to adaptation in the food sector. While irrigation can benefit individual farmers, promoting global market integration offers a broader solution for fostering resilience and sustainability across the entire food system. 
    more » « less
  4. Abstract Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis. 
    more » « less
  5. Abstract Climate change poses significant threats to global agriculture, impacting food quantity, quality, and safety. The world is far from meeting crucial climate targets, prompting the exploration of alternative strategies such as stratospheric aerosol intervention (SAI) to reduce the impacts. This study investigates the potential impacts of SAI on rice and wheat production in India, a nation highly vulnerable to climate change given its substantial dependence on agriculture. We compare the results from the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection‐1.5°C (ARISE‐SAI‐1.5) experiment, which aims to keep global average surface air temperatures at 1.5°C above preindustrial in the Shared Socioeconomic Pathway 2‐4.5 (SSP2‐4.5) global warming scenario. Yield results show ARISE‐SAI‐1.5 leads to higher production for rainfed rice and wheat. We use 10 agroclimatic indices during the vegetative, reproductive, and ripening stages to evaluate these yield changes. ARISE‐SAI‐1.5 benefits rainfed wheat yields the most, compared to rice, due to its ability to prevent rising winter and spring temperatures while increasing wheat season precipitation. For rice, SSP2‐4.5 leads to many more warm extremes than the control period during all three growth stages and may cause a delay in the monsoon. ARISE‐SAI‐1.5 largely preserves monsoon rainfall, improving yields for rainfed rice in most regions. Even without the use of SAI, adaptation strategies such as adjusting planting dates could offer partial relief under SSP2‐4.5 if it is feasible to adjust established rice‐wheat cropping systems. 
    more » « less