skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Simulations of the Geospace Response to the Arrival of an Idealized Perfect Interplanetary Coronal Mass Ejection
Abstract Previously, Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including. In this study, these estimates are used to drive a coupled magnetohydrodynamic‐ring current‐ionosphere model of geospace to obtain more physically accurate estimates of the geospace response to such an event. The sudden impulse phase is examined and compared to the estimations of Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825). The physics‐based simulation yields similar estimates for Dst rise, magnetopause compression, and equatorialvalues as the previous study. However, results diverge away from the equator.values in excess of 30 nT/s are found as low asmagnetic latitude. Under southward interplanetary magnetic field conditions, magnetopause erosion combines with strong region one Birkeland currents to intensify theresponse. Values obtained here surpass those found in historically recorded events and set the upper threshold of extreme geomagnetically induced current activity at Earth.  more » « less
Award ID(s):
1663770
PAR ID:
10480344
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Space Weather
Volume:
19
Issue:
2
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The apparent end of the internally generated Martian magnetic field at 3.6–4.1 Ga is a key event in Martian history and has been linked to insufficient core cooling. We investigate the thermal and magnetic evolution of the Martian core and mantle using parameterized models and considered three improvements on previous studies. First, our models account for thermal stratification in the core. Second, the models are constrained by estimates for the present‐day areotherm. Third, we consider core thermal conductivity,, values in the range 5–40 Was suggested by recent experiments on iron alloys at Mars core conditions. The majority of our models indicate that the core of Mars is fully conductive at present with core temperatures greater than 1940 K. All of our models are consistent with the range ofW. Models with an activation volume of 6 (0)require a mantle reference viscosity of Pa s. 
    more » « less
  2. Abstract The Congo Basin hosts the world's second largest rainforest and is a major rainfall center. However, the primary sources of moisture needed to maintain this forest, either from evapotranspiration (ET) or advection from the ocean, remain unclear. We use satellite observations of the deuterium content of water vapor (), solar induced fluorescence (SIF), precipitation, and atmospheric reanalysis to examine the relative contribution of ET to moisture in the free troposphere. We find that SIF, an indicator of photosynthesis, covaries within early rainy seasons, suggesting that ET is an important contributor to atmospheric moisture in both the spring and fall rainy seasons. However, the relative contribution of ET to the free tropospheric moisture varies between the two rainy seasons. Observedrelative to a range of observationally constrained, isotopic mixing models representative of water vapor coming from land suggests thatof the free tropospheric moisture come from ET in February, andin April, versusin August andin October. Reanalysis indicate that this difference between seasons is due to increased advection of ocean air during the fall season, thus reducing the relative contribution of ET to the Congo Basin in the fall. In addition, ET is the primary atmospheric moisture source in the winter and summer dry seasons, consistent with estimates reported in literature. Our results highlight the importance of ET from the Congo rainforest as an important source of moisture for initiating the rainy seasons. 
    more » « less
  3. Abstract Prior investigations have attempted to characterize the longitudinal variability of the column number density ratio of atomic oxygen to molecular nitrogen (O/N2) in the context of non‐migrating tides. The retrieval of thermosphericO/N2from far ultra‐violet (FUV) emissions assumes production is due to photoelectron impact excitation on O and N2. Consequently, efforts to characterize the tidal variability inO/N2have been limited by ionospheric contamination from O+ + e radiative recombination at afternoon local times (LT) around the equatorial ionization anomaly. The retrieval ofO/N2from FUV observations by the Ionospheric Connection Explorer (ICON) provides an opportunity to address this limitation. In this work, we derive modifiedO/N2datasets to delineate the response of thermospheric composition to non‐migrating tides as a function of LT in the absence of ionospheric contamination. We assess estimates of the ionospheric contribution to 135.6 nm emission intensities based on either Global Ionospheric Specification (GIS) electron density, International Reference Ionosphere (IRI) model output, or observations from the Extreme Ultra‐Violet imager (EUV) onboard ICON during March and September equinox conditions in 2020. Our approach accounts for any biases between the ionospheric and airglow datasets. We found that the ICON‐FUV data set, corrected for ionospheric contamination based on GIS, uncovered a previously obscured diurnal eastward wavenumber 2 tide in a longitudinal wavenumber 3 pattern at March equinox in 2020. This finding demonstrates not only the necessity of correcting for ionospheric contamination of the FUV signals but also the utility of using GIS for the correction. 
    more » « less
  4. Abstract The biggest volcanic eruption since 1991 happened on 15 January 2022 on the island of Hunga Tonga‐Hunga Haʻapai (20.6°S; 175.4°W) in the South Pacific between 4:00 and 4:16 UT. The updrafts from the eruption reached 58 km height. In order to observe its ionospheric effects, approximately 750 GNSS receivers in New Zealand and Australia were used to calculate the detrended total electron content (dTEC). Traveling ionospheric disturbances (TIDs) were observed over New Zealand 1.0–1.5 hr after the volcano eruption, with a horizontal wavelength () of 1,525 km, horizontal phase velocity () of 635 m/s, period (τ) of 40 min, and azimuth (α) of 214°. On the other hand, TIDs were observed 2–3 hr after the eruption in Australia with,,τ, andαof 922 km, 375 m/s, 41 min, and 266°, respectively. Using reverse ray tracing, we found that these GWs originated atz > 100 km at a location ∼500 km south of Tonga, in agreement with model results for the location of a large amplitude body force created from the breaking of primary GWs from the eruption. Thus, we found that these fast GWs were secondary, not primary GWs from the Tonga eruption. 
    more » « less
  5. Abstract The Tocantins River contributes ∼5% of the total flux of water to the Amazon River plume in the Atlantic Ocean. Here, we evaluate monthly variability in the composition and abundance of carbon, nitrogen, and suspended sediment in the lower reaches of the Tocantins River from 2014 to 2016. Dissolved organic carbon concentrations generally increased during periods of high discharge and are ∼1.5 times lower than average concentrations at the mouth of the Amazon River. Dissolved inorganic carbon similarly increased during periods of high discharge. Total dissolved nitrogen and individual nitrogen species followed a similar temporal pattern, increasing during high water.predominated the dissolved inorganic nitrogen pool, followed by, and, characteristic of environments with a relatively low anthropogenic impact. Dissolved fractions represented 92% of the total carbon exported and 78% of the total nitrogen exported. The suspended particulate sediment flux was 2.72 × 106 t yr−1, with fine suspended sediment dominating (71.3%). Concentrations of carbon relative to nitrogen indicate a primarily terrigenous source of organic matter and CO2derived from in situ respiration of this material during the rainy season and a primarily algal/bacterial source of organic matter during the dry season. Considering past estimates of dissolved carbon and nitrogen fluxes from the Amazon River to the Atlantic Ocean, the Tocantins River contributes 3% and 3.7% to total fluxes to the Amazon River plume region, respectively. While this contribution is relatively small, it may be influenced by future changes to the basin's land use and hydrology. 
    more » « less