Abstract Nearly all biosensing platforms can be described using two fundamental steps—collection and detection. Target analytes must be delivered to a sensing element, which can then relay the transduced signal. For point-of-care technologies, where operation is to be kept simple, typically the collection step is passive diffusion driven—which can be slow or limiting under low concentrations. This work demonstrates an integration of both active collection and detection by using resonant wireless power transfer coupled to a nanogap capacitor. Nanoparticles suspended in deionized water are actively trapped using wireless dielectrophoresis and positioned within the most sensitive fringe field regions for wireless impedance-based detection. Trapping of 40 nm particles and larger is demonstrated using a 3.5 VRMS, 1 MHz radiofrequency signal delivered over a distance greater than 8 cm from the nanogap capacitor. Wireless trapping and release of 1 µm polystyrene beads is simultaneously detected in real-time over a distance of 2.5 cm from the nanogap capacitor. Herein, geometric scaling strategies coupled with optimal circuit design is presented to motivate combined collection and detection biosensing platforms amenable to wireless and/or smartphone operation.
more »
« less
Adaptive and Reconfigurable Collaboration between Aircraft Wireless Systems and Wireless Communications
- Award ID(s):
- 2030243
- PAR ID:
- 10480355
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Proceedings of the IEEE Texas Symposium on Wireless and Microwave Circuits and Systems
- ISSN:
- 2995-4428
- ISBN:
- 979-8-3503-3880-5
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Location:
- Waco, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a method to wirelessly power sensors using magnetoelectric (ME) structures as receivers. ME receivers consist of composites of magnetostrictive (MS) and piezoelectric material. Using ME receivers, as opposed to inductively coupled coils, is useful when a combination of small size and low frequency are desirable. Most ME receivers require a large DC magnetic field bias for high-performance operation. We present magnetization grading approach with multiple layers of MS material that results in high-performance structures with no DC magnetic field bias required. Our device produces 600 microwatts when excited by a 100 microtesla AC magnetic field at 192.3 kHz. The device is 12.4 mm X 5 mm X 1 mm. The corresponding normalized power density is 10.71 mWcm−3Oe−2, which is the highest reported to our knowledge.more » « less
-
Brain–computer interfaces (BCIs) are neural prosthetics that enable closed-loop electrophysiology procedures. These devices are currently used in fundamental neurophysiology research, and they are moving toward clinical viability for neural rehabilitation. State-of-the-art BCI experiments have often been performed using tethered (wired) setups in controlled laboratory settings. Wired tethers simplify power and data interfaces but restrict the duration and types of experiments that are possible, particularly for the study of sensorimotor pathways in freely behaving animals. To eliminate tethers, there is significant ongoing research to develop fully wireless BCIs having wireless uplink of broadband neural recordings and wireless recharging for long-duration deployment, but significant challenges persist. BCIs must deliver complex functionality while complying with tightly coupled constraints in size, weight, power, noise, and biocompatibility. In this article, we provide an overview of recent progress in wireless BCIs and a detailed presentation of two emerging technologies that are advancing the state of the art: ultralow-power wireless backscatter communication and adaptive inductive resonant (AIR) wireless power transfer (WPT).more » « less
An official website of the United States government
