Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos.
more »
« less
Circumvent traffic shaping using virtual wireless clients in IEEE 802.11 wireless local area network
Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds.
more »
« less
- PAR ID:
- 10065519
- Date Published:
- Journal Name:
- MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)
- Page Range / eLocation ID:
- 52 to 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our everyday lives are impacted by the widespread adoption of wireless communication systems integral to residential, industrial, and commercial settings. Devices must be secure and reliable to support the emergence of large scale heterogeneous networks. Higher layer encryption techniques such as Wi-Fi Protected Access (WPA/WPA2) are vulnerable to threats, including even the latest WPA3 release. Physical layer security leverages existing components of the physical or PHY layer to provide a low-complexity solution appropriate for wireless devices. This work presents a PHY layer encryption technique based on frequency induction for Orthogonal Frequency Division Multiplexing (OFDM) signals to increase security against eavesdroppers. The secure transceiver consists of a key to frequency shift mapper, encryption module, and modified synchronizer for decryption. The system has been implemented on a Virtex-7 FPGA. The additional hardware overhead incurred on the Virtex-7 for both the transmitter and the receiver is low. Both simulation and hardware evaluation results demonstrate that the proposed system is capable of providing secure communication from an eavesdropper with no decrease in performance as compared with the baseline case of a standard OFDM transceiver. The techniques developed in this paper provide greater security to OFDM-based wireless communication systems.more » « less
-
Wi-Fi is one of the key wireless technologies for the Internet of things (IoT) owing to its ubiquity. Low-power operation of commercial Wi-Fi enabled IoT modules (typically powered by replaceable batteries) is critical in order to achieve a long battery life, while maintaining connectivity, and thereby reduce the cost and frequency of maintenance. In this work, we focus on commonly used sparse periodic uplink traffic scenario in IoT. Through extensive experiments with a state-of-the-art Wi-Fi enabled IoT module (Texas Instruments SimpleLink CC3235SF), we study the performance of the power save mechanism (PSM) in the IEEE 802.11 standard and show that the battery life of the module is limited, while running thin uplink traffic, to ~30% of its battery life on an idle connection, even when utilizing IEEE 802.11 PSM. Focusing on sparse uplink traffic, a prominent traffic scenario for IoT (e.g., periodic measurements, keep-alive mechanisms, etc.), we design a simulation framework for single-user sparse uplink traffic on ns-3, and develop a detailed and platform-agnostic accurate power consumption model within the framework and calibrate it to CC3235SF. Subsequently, we present five potential power optimization strategies (including standard IEEE 802.11 PSM) and analyze, with simulation results, the sensitivity of power consumption to specific network characteristics (e.g., round-trip time (RTT) and relative timing between TCP segment transmissions and beacon receptions) to present key insights. Finally, we propose a standard-compliant client-side cross-layer power saving optimization algorithm that can be implemented on client IoT modules. We show that the proposed optimization algorithm extends battery life by 24%, 26%, and 31% on average for sparse TCP uplink traffic with 5 TCP segments per second for networks with constant RTT values of 25 ms, 10 ms, and 5 ms, respectively.more » « less
-
Federated Learning (FL) has emerged as an effective paradigm for distributed learning systems owing to its strong potential in exploiting underlying data characteristics while preserving data privacy. In cases of practical data heterogeneity among FL clients in many Internet-of-Things (IoT) applications over wireless networks, however, existing FL frameworks still face challenges in capturing the overall feature properties of local client data that often exhibit disparate distributions. One approach is to apply generative adversarial networks (GANs) in FL to address data heterogeneity by integrating GANs to regenerate anonymous training data without exposing original client data to possible eavesdropping. Despite some successes, existing GAN-based FL frameworks still incur high communication costs and elicit other privacy concerns, limiting their practical applications. To this end, this work proposes a novel FL framework that only applies partial GAN model sharing. This new PS-FedGAN framework effectively addresses heterogeneous data distributions across clients and strengthens privacy preservation at reduced communication costs, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN demonstrates strong potential to tackle FL under heterogeneous (non-IID) client data distributions, while improving data privacy and lowering communication overhead.more » « less
-
Abstract Previous studies generally assume that barriers to internet access are largely passive. That is, exclusion from the Internet is a consequence of poorly resourced individuals, communities, and institutions. This study complicates that assumption by focusing on the active policing and gatekeeping of internet access. Specifically, we estimate the causal effect of free Wi-Fi at chain restaurants on quality-of-life crime reporting by leveraging a staggered difference-in-differences design which compares geo-located crime reports near chain restaurants in Chicago before and after those restaurants introduced free Wi-Fi. We find that free Wi-Fi led to a substantive and significant increase in quality-of-life policing when restaurants were located in wealthier and Whiter areas, but not in other areas. Our findings suggest that internet access itself may be actively policed by social institutions, in our case, national chain restaurants and the police, to protect access for some at the expense of others.more » « less