skip to main content


Title: Circumvent traffic shaping using virtual wireless clients in IEEE 802.11 wireless local area network
Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds.  more » « less
Award ID(s):
1723587 1802701
NSF-PAR ID:
10065519
Author(s) / Creator(s):
;
Date Published:
Journal Name:
MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)
Page Range / eLocation ID:
52 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our everyday lives are impacted by the widespread adoption of wireless communication systems integral to residential, industrial, and commercial settings. Devices must be secure and reliable to support the emergence of large scale heterogeneous networks. Higher layer encryption techniques such as Wi-Fi Protected Access (WPA/WPA2) are vulnerable to threats, including even the latest WPA3 release. Physical layer security leverages existing components of the physical or PHY layer to provide a low-complexity solution appropriate for wireless devices. This work presents a PHY layer encryption technique based on frequency induction for Orthogonal Frequency Division Multiplexing (OFDM) signals to increase security against eavesdroppers. The secure transceiver consists of a key to frequency shift mapper, encryption module, and modified synchronizer for decryption. The system has been implemented on a Virtex-7 FPGA. The additional hardware overhead incurred on the Virtex-7 for both the transmitter and the receiver is low. Both simulation and hardware evaluation results demonstrate that the proposed system is capable of providing secure communication from an eavesdropper with no decrease in performance as compared with the baseline case of a standard OFDM transceiver. The techniques developed in this paper provide greater security to OFDM-based wireless communication systems. 
    more » « less
  2. Wi-Fi is one of the key wireless technologies for the Internet of things (IoT) owing to its ubiquity. Low-power operation of commercial Wi-Fi enabled IoT modules (typically powered by replaceable batteries) is critical in order to achieve a long battery life, while maintaining connectivity, and thereby reduce the cost and frequency of maintenance. In this work, we focus on commonly used sparse periodic uplink traffic scenario in IoT. Through extensive experiments with a state-of-the-art Wi-Fi enabled IoT module (Texas Instruments SimpleLink CC3235SF), we study the performance of the power save mechanism (PSM) in the IEEE 802.11 standard and show that the battery life of the module is limited, while running thin uplink traffic, to ~30% of its battery life on an idle connection, even when utilizing IEEE 802.11 PSM. Focusing on sparse uplink traffic, a prominent traffic scenario for IoT (e.g., periodic measurements, keep-alive mechanisms, etc.), we design a simulation framework for single-user sparse uplink traffic on ns-3, and develop a detailed and platform-agnostic accurate power consumption model within the framework and calibrate it to CC3235SF. Subsequently, we present five potential power optimization strategies (including standard IEEE 802.11 PSM) and analyze, with simulation results, the sensitivity of power consumption to specific network characteristics (e.g., round-trip time (RTT) and relative timing between TCP segment transmissions and beacon receptions) to present key insights. Finally, we propose a standard-compliant client-side cross-layer power saving optimization algorithm that can be implemented on client IoT modules. We show that the proposed optimization algorithm extends battery life by 24%, 26%, and 31% on average for sparse TCP uplink traffic with 5 TCP segments per second for networks with constant RTT values of 25 ms, 10 ms, and 5 ms, respectively. 
    more » « less
  3. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  4. Kuperman, Alon (Ed.)
    Increasing the spatial and temporal density of data using networked sensors, known as the Internet of Things (IoT), can lead to enhanced productivity and cost savings in a host of industries. Where applications involve large outdoor expanses, such as farming, oil and gas, or defense, large regions of unelectrified land could yield significant benefits if instrumented with a high density of IoT systems. The major limitation of expanding IoT networks in such applications stems from the challenge of delivering power to each sensing device. Batteries, generators, and renewable sources have predominately been used to address the challenge, but these solutions require constant maintenance or are sensitive to environmental factors. This work presents a novel approach where conduction currents through soil are utilized for the wireless powering of sensor networks, initial investigation is within an 0.8-ha (2-acre) area. The technique is not line-of-sight, powers all devices simultaneously through near-field mechanics, and has the ability to be minimally invasive to the working environment. A theory of operation is presented and the technique is experimentally demonstrated in an agricultural setting. Scaling and transfer parameters are discussed. 
    more » « less
  5. With the emergence of small cell networks and fifth-generation (5G) wireless networks, the backhaul becomes increasingly complex. This study addresses the problem of how a central SDN orchestrator can flexibly share the total backhaul capacity of the various wireless operators among their gateways and radio nodes (e.g., LTE enhanced Node Bs or Wi-Fi access points). In order to address this backhaul resource allocation problem, we introduce a novel backhaul optimization methodology in the context of the recently proposed LayBack SDN backhaul architecture. In particular, we explore the decomposition of the central optimization problem into a layered dual decomposition model that matches the architectural layers of the LayBack backhaul architecture. In order to promote scalability and responsiveness, we employ different timescales, i.e., fast timescales at the radio nodes and slower timescales in the higher LayBack layers that are closer to the central SDN orchestrator. We numerically evaluate the scalable layered optimization for a specific case of the LayBack backhaul architecture with four layers, namely a radio node (eNB) layer, a gateway layer, an operator layer, and central coordination in an SDN orchestrator layer. The coordinated sharing of the total backhaul capacity among multiple operators lowers the queue lengths compared to the conventional backhaul without sharing among operators. 
    more » « less