skip to main content


Title: Object Pose Estimation using Mid-level Visual Representations
This work proposes a novel pose estimation model for object categories that can be effectively transferred to pre-viously unseen environments. The deep convolutional network models (CNN) for pose estimation are typically trained and evaluated on datasets specifically curated for object detection, pose estimation, or 3D reconstruction, which requires large amounts of training data. In this work, we propose a model for pose estimation that can be trained with small amount of data and is built on the top of generic mid-level represen-tations [33] (e.g. surface normal estimation and re-shading). These representations are trained on a large dataset without requiring pose and object annotations. Later on, the predictions are refined with a small CNN neural network that exploits object masks and silhouette retrieval. The presented approach achieves superior performance on the Pix3D dataset [26] and shows nearly 35 % improvement over the existing models when only 25 % of the training data is available. We show that the approach is favorable when it comes to generalization and transfer to novel environments. Towards this end, we introduce a new pose estimation benchmark for commonly encountered furniture categories on challenging Active Vision Dataset [1] and evaluated the models trained on the Pix3D dataset.  more » « less
Award ID(s):
1925231
PAR ID:
10480457
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Format(s):
Medium: X
Location:
Kyoto, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate pose estimation is often a requirement for robust robotic grasping and manipulation of objects placed in cluttered, tight environments, such as a shelf with multiple objects. When deep learning approaches are employed to perform this task, they typically require a large amount of training data. However, obtaining precise 6 degrees of freedom for ground-truth can be prohibitively expensive. This work therefore proposes an architecture and a training process to solve this issue. More precisely, we present a weak object detector that enables localizing objects and estimating their 6D poses in cluttered and occluded scenes. To minimize the human labor required for annotations, the proposed detector is trained with a combination of synthetic and a few weakly annotated real images (as little as 10 images per object), for which a human provides only a list of objects present in each image (no time-consuming annotations, such as bounding boxes, segmentation masks and object poses). To close the gap between real and synthetic images, we use multiple domain classifiers trained adversarially. During the inference phase, the resulting class-specific heatmaps of the weak detector are used to guide the search of 6D poses of objects. Our proposed approach is evaluated on several publicly available datasets for pose estimation. We also evaluated our model on classification and localization in unsupervised and semi-supervised settings. The results clearly indicate that this approach could provide an efficient way toward fully automating the training process of computer vision models used in robotics. 
    more » « less
  2. This paper focuses on vision-based pose estimation for multiple rigid objects placed in clutter, especially in cases involving occlusions and objects resting on each other. Progress has been achieved recently in object recognition given advancements in deep learning. Nevertheless, such tools typically require a large amount of training data and significant manual effort to label objects. This limits their applicability in robotics, where solutions must scale to a large number of objects and variety of conditions. Moreover, the combinatorial nature of the scenes that could arise from the placement of multiple objects is hard to capture in the training dataset. Thus, the learned models might not produce the desired level of precision required for tasks, such as robotic manipulation. This work proposes an autonomous process for pose estimation that spans from data generation to scene-level reasoning and self-learning. In particular, the proposed framework first generates a labeled dataset for training a Convolutional Neural Network (CNN) for object detection in clutter. These detections are used to guide a scene-level optimization process, which considers the interactions between the different objects present in the clutter to output pose estimates of high precision. Furthermore, confident estimates are used to label online real images from multiple views and re-train the process in a self-learning pipeline. Experimental results indicate that this process is quickly able to identify in cluttered scenes physically-consistent object poses that are more precise than the ones found by reasoning over individual instances of objects. Furthermore, the quality of pose estimates increases over time given the self-learning process. 
    more » « less
  3. Struck-by accidents are potential safety concerns on construction sites and require a robust machine pose estimation. The development of deep learning methods has enhanced the human pose estimation that can be adapted for articulated machines. These methods require abundant dataset for training, which is challenging and time-consuming to obtain on-site. This paper proposes a fast data collection approach to build the dataset for excavator pose estimation. It uses two industrial robot arms as the excavator and the camera monopod to collect different excavator pose data. The 3D annotation can be obtained from the robot's embedded encoders. The 2D pose is annotated manually. For evaluation, 2,500 pose images were collected and trained with the stacked hourglass network. The results showed that the dataset is suitable for the excavator pose estimation network training in a controlled environment, which leads to the potential of the dataset augmenting with real construction site images. 
    more » « less
  4. Pose estimation is a basic module in many robot manipulation pipelines. Estimating the pose of objects in the environment can be useful for grasping, motion planning, or manipulation. However, current state-of-the-art methods for pose estimation either rely on large annotated training sets or simulated data. Further, the long training times for these methods prohibit quick interaction with novel objects. To address these issues, we introduce a novel method for zero-shot object pose estimation in clutter. Our approach uses a hypothesis generation and scoring framework, with a focus on learning a scoring function that generalizes to objects not used for training. We achieve zero-shot generalization by rating hypotheses as a function of unordered point differences. We evaluate our method on challenging datasets with both textured and untextured objects in cluttered scenes and demonstrate that our method significantly outperforms previous methods on this task. We also demonstrate how our system can be used by quickly scanning and building a model of a novel object, which can immediately be used by our method for pose estimation. Our work allows users to estimate the pose of novel objects without requiring any retraining. 
    more » « less
  5. Recent efforts in deploying Deep Neural Networks for object detection in real world applications, such as autonomous driving, assume that all relevant object classes have been observed during training. Quantifying the performance of these models in settings when the test data is not represented in the training set has mostly focused on pixel-level uncertainty estimation techniques of models trained for semantic segmentation. This paper proposes to exploit additional predictions of semantic segmentation models and quantifying its confidences, followed by classification of object hypotheses as known vs. unknown, out of distribution objects. We use object proposals generated by Region Proposal Network (RPN) and adapt distance aware uncertainty estimation of semantic segmentation using Radial Basis Functions Networks (RBFN) for class agnostic object mask prediction. The augmented object proposals are then used to train a classifier for known vs. unknown objects categories. Experimental results demonstrate that the proposed method achieves parallel performance to state of the art methods for unknown object detection and can also be used effectively for reducing object detectors' false positive rate. Our method is well suited for applications where prediction of non-object background categories obtained by semantic segmentation is reliable. 
    more » « less