skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transcriptome‐wide association studies: a view from Mendelian randomization
BackgroundGenome‐wide association studies (GWASs) have identified thousands of genetic variants that are associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome‐wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene regulatory mechanisms underlying variant‐trait associations. Specifically, TWAS integrate GWAS with expression mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each such method has a different modeling assumption and many were initially developed to answer different biological questions. Consequently, it is not straightforward to understand their modeling property from a theoretical perspective. ResultsWe present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all be viewed as two‐sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and re‐interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe future directions for TWAS methodology development. ConclusionsWe hope that this review would serve as a useful reference for both methodologists who develop TWAS methods and practitioners who perform TWAS analysis.  more » « less
Award ID(s):
1712933
PAR ID:
10480498
Author(s) / Creator(s):
;
Publisher / Repository:
Quantitative Biology
Date Published:
Journal Name:
Quantitative Biology
Volume:
9
Issue:
2
ISSN:
2095-4689
Page Range / eLocation ID:
107 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. 
    more » « less
  2. Genome-wide association studies (GWASs) have identified and replicated many genetic variants that are associated with diseases and disease-related complex traits. However, the biological mechanisms underlying these identified associations remain largely elusive. Exploring the biological mechanisms underlying these associations requires identifying trait-relevant tissues and cell types, as genetic variants likely influence complex traits in a tissue- and cell type-specific manner. Recently, several statistical methods have been developed to integrate genomic data with GWASs for identifying trait-relevant tissues and cell types. These methods often rely on different genomic information and use different statistical models for trait-tissue relevance inference. Here, we present a comprehensive technical review to summarize ten existing methods for trait-tissue relevance inference. These methods make use of different genomic information that include functional annotation information, expression quantitative trait loci information, genetically regulated gene expression information, as well as gene co-expression network information. These methods also use different statistical models that range from linear mixed models to covariance network models. We hope that this review can serve as a useful reference both for methodologists who develop methods and for applied analysts who apply these methods for identifying trait relevant tissues and cell types. 
    more » « less
  3. Deciphering the functional effects of noncoding genetic variants stands as a fundamental challenge in human genetics. Traditional approaches, such as Genome-Wide Association Studies (GWAS), Transcriptome-Wide Association Studies (TWAS), and Quantitative Trait Loci (QTL) studies, are constrained by obscured the underlying molecular-level mechanisms, making it challenging to unravel the genetic basis of complex traits. The advent of Next-Generation Sequencing (NGS) technologies has enabled context-specific genome-wide measurements, encompassing gene expression, chromatin accessibility, epigenetic marks, and transcription factor binding sites, to be obtained across diverse cell types and tissues, paving the way for decoding genetic variation effects directly from DNA sequences only. Thede novopredictions of functional effects are pivotal for enhancing our comprehension of transcriptional regulation and its disruptions caused by the plethora of noncoding genetic variants linked to human diseases and traits. This review provides a systematic overview of the state-of-the-art models and algorithms for genetic variant effect predictions, including traditional sequence-based models, Deep Learning models, and the cutting-edge Foundation Models. It delves into the ongoing challenges and prospective directions, presenting an in-depth perspective on contemporary developments in this domain. 
    more » « less
  4. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  5. Abstract Capsicum chinense (habanero pepper) exhibits substantial variation in fruit pungency, color, and flavor due to its rich secondary metabolite composition, including capsaicinoids, carotenoids, and volatile organic compounds (VOCs). To dissect the genetic and regulatory basis of these traits, we conducted an integrative analysis across 244 diverse accessions using metabolite profiling, genome-wide association studies (GWAS), and transcriptome-wide association studies (TWAS). GWAS identified 507 SNPs for capsaicinoids, 304 for carotenoids, and 1176 for VOCs, while TWAS linked gene expression to metabolite levels, highlighting biosynthetic and regulatory genes in phenylpropanoid, fatty acid, and terpenoid pathways. Segmental RNA sequencing across fruit tissues of contrasting accessions revealed 7034 differentially expressed genes, including MYB31, 3-ketoacyl-CoA synthase, phytoene synthase, and ABC transporters. Notably, AP2 transcription factors and Pentatrichopeptide repeat (PPR) emerged as central regulators, co-expressed with carotenoid and VOC biosynthetic genes. High-resolution spatial transcriptomics (Stereo-seq) identified 74 genes with tissue-specific expression that overlap with GWAS and TWAS loci, reinforcing their regulatory relevance. To validate these candidates, we employed CRISPR/Cas9 to knock out AP2 and PPR genes in tomato. Widely targeted metabolomics and carotenoid profiling revealed major metabolic shifts: AP2 mutants accumulated higher levels of β-carotene and lycopene. In contrast, PPR mutants altered xanthophyll ester and apocarotenoid levels, supporting their roles in carotenoid flux and remodeling. This study provides the first integrative GWAS–TWAS–spatial transcriptomics in C. chinense, revealing key regulators of fruit quality traits. These findings lay the groundwork for precision breeding and metabolic engineering to enhance nutritional and sensory attributes in peppers. 
    more » « less