Abstract Based on the meteor winds measured at Mohe (MH; 53.5°N, 122.3°E) and the reanalysis data, we investigate the variations of planetary waves in the mesosphere and lower thermosphere (MLT) region during the 2019/2020 Arctic winter. Four stratospheric polar warmings, including two sudden stratospheric warmings (SSWs), are observed from November 2019 to March 2020. Quasi‐10‐day waves (Q10DWs) are found to be enhanced following three of these warmings in the zonal winds in the MLT region over MH, but unusually weak after the SSW in February 2020. The trigger mechanisms of the enhanced Q10DWs are investigated and the reason for the unusually weak Q10DWs in February is revealed. Upward propagations and in situ generations of Q10DWs are both limited during the February SSW. Our analysis indicates that Q10DWs in the MLT region in February 2020 are largely inhibited by the extremely strong polar vortex and a lack of mesospheric instability. 
                        more » 
                        « less   
                    
                            
                            A Data-Driven Study of the Drivers of Stratospheric Circulation via Reduced Order Modeling and Data Assimilation
                        
                    
    
            Stratospheric dynamics are strongly affected by the absorption/emission of radiation in the Earth’s atmosphere and Rossby waves that propagate upward from the troposphere, perturbing the zonal flow. Reduced order models of stratospheric wave–zonal interactions, which parameterize these effects, have been used to study interannual variability in stratospheric zonal winds and sudden stratospheric warming (SSW) events. These models are most sensitive to two main parameters: Λ, forcing the mean radiative zonal wind gradient, and h, a perturbation parameter representing the effect of Rossby waves. We take one such reduced order model with 20 years of ECMWF atmospheric reanalysis data and estimate Λ and h using both a particle filter and an ensemble smoother to investigate if the highly-simplified model can accurately reproduce the averaged reanalysis data and which parameter properties may be required to do so. We find that by allowing additional complexity via an unparameterized Λ(t), the model output can closely match the reanalysis data while maintaining behavior consistent with the dynamical properties of the reduced-order model. Furthermore, our analysis shows physical signatures in the parameter estimates around known SSW events. This work provides a data-driven examination of these important parameters representing fundamental stratospheric processes through the lens and tractability of a reduced order model, shown to be physically representative of the relevant atmospheric dynamics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2137947
- PAR ID:
- 10480516
- Editor(s):
- Bucchignani, Edoardo; Williams, Paul D.
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Meteorology
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2674-0494
- Page Range / eLocation ID:
- 1 to 35
- Subject(s) / Keyword(s):
- particle filter ensemble smoother sudden stratospheric warming bistability reanalysis data dynamical systems synoptic-scale meteorology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Eastward‐propagating planetary waves (EPWs) were investigated prior to the boreal January 2009 major sudden stratospheric warming (SSW) event simulated by the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model with specified dynamics. About 22 days before SSW onset, a background flow with jet maxima around the upper polar stratosphere and subtropical mesosphere developed due to the net forcing by gravity and planetary waves. The mesospheric wind structure was largely unstable and supported a wave geometry conducive to overreflection. With a zonal phase speed of ∼10 m s−1, EPWs appeared near their turning and critical layers as wavenumber‐2 perturbations in the stratosphere and mesosphere. Accompanied by upward EPW activity from the lower stratosphere, EPW growth exhibited characteristics of wave instability and overreflection.more » « less
- 
            null (Ed.)Abstract The Whole Atmosphere Community Climate Model, version 4 (WACCM4), is used to investigate the influence of stratospheric conditions on the development of sudden stratospheric warmings (SSWs). To this end, targeted experiments are performed on selected modeled SSW events. Specifically, the model is reinitialized three weeks before a given SSW, relaxing the surface fluxes, winds, and temperature below 10 km to the corresponding fields from the free-running simulation. Hence, the tropospheric wave evolution is unaltered across the targeted experiments, but the stratosphere itself can evolve freely. The stratospheric zonal-mean state is then altered 21 days prior to the selected SSWs and rerun with an ensemble of different initial conditions. It is found that a given tropospheric evolution concomitant with the development of an SSW does not uniquely determine the occurrence of an event and that the stratospheric conditions are relevant to the subsequent evolution of the stratospheric flow toward an SSW, even for a fixed tropospheric evolution. It is also shown that interpreting the meridional heat flux at 100 hPa as a proxy of the tropospheric injection of wave activity into the stratosphere should be regarded with caution and that stratospheric dynamics critically influence the heat flux at that altitude.more » « less
- 
            The response of the thermospheric daytime longitudinally averaged zonal and meridional winds and neutral temperature to the 2020/2021 major sudden stratospheric warming (SSW) is studied at low-to middle latitudes (0◦- 40◦N) using observations by NASA’s ICON and GOLD satellites. The major SSW commenced on 1 January 2021 and lasted for several days. Results are compared with the non-SSW winter of 2019/2020 and pre-SSW period of December 2020. Major changes in winds and temperature are observed during the SSW. The northward and westward winds are enhanced in the thermosphere especially above ∼140 km during the warming event, while temperature around 150 km drops up to 50 K compared to the pre-SSW phase. Changes in the zonal and meridional winds are likely caused by the SSW-induced changes in the propagation and dissipation conditions of internal atmospheric waves. Changes in the horizontal circulation during the SSW can generate upwelling at low-latitudes, which can contribute to the adiabatic cooling of the low-latitude thermosphere. The observed changes during the major SSW are a manifestation of long-range vertical coupling in the atmosphere.more » « less
- 
            Abstract Extreme weather events have significant consequences, dominating the impact of climate on society. While high‐resolution weather models can forecast many types of extreme events on synoptic timescales, long‐term climatological risk assessment is an altogether different problem. A once‐in‐a‐century event takes, on average, 100 years of simulation time to appear just once, far beyond the typical integration length of a weather forecast model. Therefore, this task is left to cheaper, but less accurate, low‐resolution or statistical models. But there is untapped potential in weather model output: despite being short in duration, weather forecast ensembles are produced multiple times a week. Integrations are launched with independent perturbations, causing them to spread apart over time and broadly sample phase space. Collectively, these integrations add up to thousands of years of data. We establish methods to extract climatological information from these short weather simulations. Using ensemble hindcasts by the European Center for Medium‐range Weather Forecasting archived in the subseasonal‐to‐seasonal (S2S) database, we characterize sudden stratospheric warming (SSW) events with multi‐centennial return times. Consistent results are found between alternative methods, including basic counting strategies and Markov state modeling. By carefully combining trajectories together, we obtain estimates of SSW frequencies and their seasonal distributions that are consistent with reanalysis‐derived estimates for moderately rare events, but with much tighter uncertainty bounds, and which can be extended to events of unprecedented severity that have not yet been observed historically. These methods hold potential for assessing extreme events throughout the climate system, beyond this example of stratospheric extremes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    