skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design Principles for Noncentrosymmetric Materials
Noncentrosymmetric (NCS) materials feature an exciting array of functionalities such as nonlinear optical (NLO) responses and topological spin textures (skyrmions). While NLO materials and magnetic skyrmions display two different sets of physical properties, their design strategies are deeply connected in terms of atomic-scale precision, structural customization, and electronic tunability. Despite impressive progress in studying these systems separately, a joint road map for navigating the chemical principles for NCS materials remains elusive. This review unites two subtopics of NCS systems, NLO materials and magnetic skyrmions, offering a multifaceted narrative of how to translate the often-abstract fundamentals to the targeted functionalities while inviting innovative approaches from the community. We outline the design principles central to the desired properties by exemplifying relevant examples in the field. We supplement materials chemistry with pertinent electronic structures to demonstrate the power of the fundamentals to create systems integration relevant to foreseeable societal impacts in frequency-doubling instrumentation and spin-based electronics.  more » « less
Award ID(s):
2227933
PAR ID:
10480618
Author(s) / Creator(s):
;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Materials Research
Volume:
53
Issue:
1
ISSN:
1531-7331
Page Range / eLocation ID:
253 to 274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. van der Waals magnetic materials open up exciting possibilities to investigate fundamental spin properties in low-dimensional systems and to build compact functional spintronic structures. This review focuses on the recent progress in two-dimensional(2D) magnets that explore beyond the homogenous magnetically-ordered state, including magnons (spin waves), magnetic skyrmions, and complex magnetic domains. Properties of these spin and topology excitations in 2D magnets provide insights into spin-orbit interactions and other forms of coupling between electrons, phonons, and spin-dependent excitations. Such spin-based quasiparticles can also serve as information carriers for next-generation high-speed computing elements. We will first lay out the general theoretical basis of dynamical responses in magnetic systems, followed by detailed descriptions of experimental progress in magnons and spin textures (including magnetic domains and skyrmions). Discussion on the experimental techniques and future perspectives are also included. 
    more » « less
  2. Abstract Proximity effect, which is the coupling between distinct order parameters across interfaces of heterostructures, has attracted immense interest owing to the customizable multifunctionalities of diverse 3D materials. This facilitates various physical phenomena, such as spin order, charge transfer, spin torque, spin density wave, spin current, skyrmions, and Majorana fermions. These exotic physics play important roles for future spintronic applications. Nevertheless, several fundamental challenges remain for effective applications: unavoidable disorder and lattice mismatch limits in the growth process, short characteristic length of proximity, magnetic fluctuation in ultrathin films, and relatively weak spin–orbit coupling (SOC). Meanwhile, the extensive library of atomically thin, 2D van der Waals (vdW) layered materials, with unique characteristics such as strong SOC, magnetic anisotropy, and ultraclean surfaces, offers many opportunities to tailor versatile and more effective functionalities through proximity effects. Here, this paper focuses on magnetic proximity, i.e., proximitized magnetism and reviews the engineering of magnetism‐related functionalities in 2D vdW layered heterostructures for next‐generation electronic and spintronic devices. The essential factors of magnetism and interfacial engineering induced by magnetic layers are studied. The current limitations and future challenges associated with magnetic proximity‐related physics phenomena in 2D heterostructures are further discussed. 
    more » « less
  3. Abstract Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection. 
    more » « less
  4. Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10 −3 kcal mol −1 . The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors. 
    more » « less
  5. Abstract Magnetic skyrmions are of great interest to both fundamental research and applications in post-von-Neumann computing devices. The successful implementation of skyrmionic devices requires functionalities of skyrmions with effective controls. Here we show that the local dynamics of skyrmions, in contrast to the global dynamics of a skyrmion as a whole, can be introduced to provide effective functionalities for versatile computing. A single skyrmion interacting with local pinning centres under thermal effects can fluctuate in time and switch between a small-skyrmion and a large-skyrmion state, thereby serving as a robust true random number generator for probabilistic computing. Moreover, neighbouring skyrmions exhibit an anti-correlated coupling in their fluctuation dynamics. Both the switching probability and the dynamic coupling strength can be tuned by modifying the applied magnetic field and spin current. Our results could lead to progress in developing magnetic skyrmionic devices with high tunability and efficient controls. 
    more » « less