Abstract We present ALMA dust polarization and molecular line observations toward four clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (θB), column density gradients (θNG), local gravity (θLG), and velocity gradients (θVG) to investigate the multi-scale (from ∼30 to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation betweenθBandθNGchanges from statistically more perpendicular to parallel as column density ( ) increases, which is a signature of trans-to-sub-Alfvénic turbulence at complex/cloud scales as revealed by previous numerical studies. BecauseθNGandθLGare preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment betweenθBandθNGat higher is because the magnetic field line is dragged by gravity. At even higher , the angle betweenθBandθNGorθLGtransits back to having no preferred orientation, or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found betweenθBandθVGthroughout our studied range, which indicates a trans-to-sub-Alfvénic state at small scales as well, and this signifies that magnetic field has an important role in the star formation process in NGC 6334. The normalized mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases with , but the KTH method may fail at high due to the impact of star formation feedback. 
                        more » 
                        « less   
                    
                            
                            Regularized 3D spectroscopy with CubeFit: Method and application to the Galactic Center circumnuclear disk
                        
                    
    
            Context.The Galactic Center black hole and the nuclear star cluster are surrounded by a clumpy ring of gas and dust, the circumnuclear disk (CND), that rotates about them at a standoff distance of ≃1.5 pc. The mass and density of individual clumps in the CND are disputed. Aims.We seek to use H2to characterize the clump size distribution and to investigate the morphology and dynamics of the interface between the ionized interior layer of the CND and the molecular reservoir lying farther out (corresponding to the inner rim of the CND, illuminated in ultraviolet light by the central star cluster). Methods.We have observed two fields of approximately 20″ × 20″ in the CND at near-infrared wavelengths with the OSIRIS spectro-imager at the Keck Observatory. These two fields, located at the approaching and receding nodes of the CND, best display this interface. Our data cover two H2lines as well as the Brγline (tracing H II). We have developed the tool CubeFit, an original method for extracting maps of continuous physical parameters (such as the velocity field and velocity dispersion) from integral-field spectroscopy data, using regularization to largely preserve spatial resolution in regions of low signal-to-noise ratio. Results.This original method enables us to isolate compact, bright features in the interstellar medium of the CND. Several clumps in the southwestern field assume the appearance of filaments, many of which are parallel to one another. We conclude that these clumps cannot be self-gravitating. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1909554
- PAR ID:
- 10480718
- Publisher / Repository:
- A & A
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 664
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A97
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We use 0.1″ observations from the Atacama Large Millimeter Array (ALMA), Hubble Space Telescope (HST), and JWST to study young massive clusters (YMCs) in their embedded “infant” phase across the central starburst ring in NGC 3351. Our new ALMA data reveal 18 bright and compact (sub-)millimeter continuum sources, of which 8 have counterparts in JWST images and only 6 have counterparts in HST images. Based on the ALMA continuum and molecular line data, as well as ancillary measurements for the HST and JWST counterparts, we identify 14 sources as infant star clusters with high stellar and/or gas masses (∼105M⊙), small radii (≲ 5 pc), large escape velocities (6–10 km s−1), and short freefall times (0.5–1 Myr). Their multiwavelength properties motivate us to divide them into four categories, likely corresponding to four evolutionary stages from starless clumps to exposed Hiiregion–cluster complexes. Leveraging age estimates for HST-identified clusters in the same region, we infer an evolutionary timeline, ranging from ∼1–2 Myr before cluster formation as starless clumps, to ∼4–6 Myr after as exposed Hiiregion–cluster complexes. Finally, we show that the YMCs make up a substantial fraction of recent star formation across the ring, exhibit a nonuniform azimuthal distribution without a very coherent evolutionary trend along the ring, and are capable of driving large-scale gas outflows.more » « less
- 
            Abstract Despite the ubiquity of clumpy star-forming galaxies at high-redshift, the origin of clumps are still largely unconstrained due to the limited observations that can validate the mechanisms for clump formation. We postulate that if clumps form due to the accretion of metal-poor gas that leads to violent disk instability, clumpy galaxies should have lower gas-phase metallicities compared to nonclumpy galaxies. In this work, we obtain the near-infrared spectrum for 42 clumpy and nonclumpy star-forming galaxies of similar masses, star formation rates, and colors atz ≈ 0.7 using the Gemini Near-Infrared Spectrograph (GNIRS) and infer their gas-phase metallicity from the [Nii]λ6584 and Hαline ratio. We find that clumpy galaxies have lower metallicities compared to nonclumpy galaxies, with an offset in the weighted average metallicity of 0.07 ± 0.02 dex. We also find an offset of 0.06 ± 0.02 dex between clumpy and nonclumpy galaxies in a comparable sample of 23 star-forming galaxies atz ≈ 1.5 using existing data from the FMOS-COSMOS survey. Similarly, lower [Nii]λ6584/Hαratios are typically found in galaxies that have more of their UVrestluminosity originating from clumps, suggesting that clumpier galaxies are more metal-poor. We also derive the intrinsic velocity dispersion and line-of-sight rotational velocity for galaxies from the GNIRS sample. The majority of galaxies haveσ0/vc ≈ 0.2, with no significant difference between clumpy and nonclumpy galaxies. Our result indicates that clump formation may be related to the inflow of metal-poor gas; however, the process that forms them does not necessarily require significant, long-term kinematic instability in the disk.more » « less
- 
            Context. The study of molecular line emission is crucial to unveil the kinematics and the physical conditions of gas in star-forming regions. We use data from the ALMAGAL survey, which provides an unprecedentedly large statistical sample of high-mass star-forming clumps that helps us to remove bias and reduce noise (e.g., due to source peculiarities, selection, or environmental effects) to determine how well individual molecular species trace continuum emission. Aims. Our aim is to quantify whether individual molecular transitions can be used reliably to derive the physical properties of the bulk of the H2gas, by considering morphological correlations in their overall integrated molecular line emission with the cold dust. We selected transitions of H2CO, CH3OH, DCN, HC3N, CH3CN, CH3OCHO, SO, and SiO and compared them with the 1.38 mm dust continuum emission at different spatial scales in the ALMAGAL sample. We included two transitions of H2CO to understand whether the validity of the results depends on the excitation condition of the selected transition of a molecular species. The ALMAGAL project observed more than 1000 candidate high-mass star-forming clumps in ALMA band 6 at a spatial resolution down to 1000 au. We analyzed a total of 1013 targets that cover all evolutionary stages of the high-mass star formation process and different conditions of clump fragmentation. Methods. For the first time, we used the method called histogram of oriented gradients (HOG) as implemented in the toolastroHOGon a large statistical sample to compare the morphology of integrated line emission with maps of the 1.38 mm dust continuum emission. For each clump, we defined two masks: the first mask covered the extended more diffuse continuum emission, and the second smaller mask that only contained the compact sources. We selected these two masks to study whether and how the correlation among the selected molecules changes with the spatial scale of the emission, from extended more diffuse gas in the clumps to denser gas in compact fragments (cores). Moreover, we calculated the Spearman correlation coefficient and compared it with our astroHOG results. Results. Only H2CO, CH3OH, and SO of the molecular species we analyzed show emission on spatial scales that are comparable with the diffuse 1.38 mm dust continuum emission. However, according the HOG method, the median correlation of the emission of each of these species with the continuum is only ~24–29%. In comparison with the dusty dense fragments, these molecular species still have low correlation values that are below 45% on average. The weak morphological correlation suggests that these molecular lines likely trace the clump medium or outer layers around dense fragments on average (in some cases, this might be due to optical depth effects) or also trace the inner parts of outflows at this scale. On the other hand DCN, HC3N, CH3CN3and CH3OCHO are well correlated with the dense dust fragments at above 60%. The lowest correlation is seen with SiO for the extended continuum emission and for compact sources. Moreover, unlike other outflow tracers, in a large fraction of the sources, SiO does not cover the area of the extended continuum emission well. This and the results of the astroHOG analysis reveal that SiO and SO do not trace the same gas, in contrast to what was previously thought. From the comparison of the results of the HOG method and the Spearman correlation coefficient, the HOG method gives much more reliable results than the intensity-based coefficient when the level of similarity of the emission morphology is estimated.more » « less
- 
            Abstract CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendN∝Ms, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andN–Mtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    