skip to main content


Title: High‐Resolution, Multiproxy Speleothem Record of the 8.2 ka Event From Mainland Southeast Asia
Abstract

The 8.2 ka event is the most significant global climate anomaly of the Holocene epoch, but a lack of records from Mainland Southeast Asia (MSEA) currently limits our understanding of the spatial and temporal extent of the climate response. A newly developed speleothem record from Tham Doun Mai Cave, Northern Laos provides the first high‐resolution record of this event in MSEA. Our multiproxy record (δ18O, δ13C, Mg/Ca, Sr/Ca, and petrographic data), anchored in time by 9 U‐Th ages, reveals a significant reduction in local rainfall amount and weakening of the monsoon at the event onset at ∼8.29 ± 0.03 ka BP. This response lasts for a minimum of ∼170 years, similar to event length estimates from other speleothem δ18O monsoon records. Interestingly, however, our δ13C and Mg/Ca data, proxies for local hydrology, show that abrupt changes to local rainfall amounts began decades earlier (∼70 years) than registered in the δ18O. Moreover, the δ13C and Mg/Ca also show that reductions in rainfall continued for at least ∼200 years longer than the weakening of the monsoon inferred from the δ18O. Our interpretations suggest that drier conditions brought on by the 8.2 ka event in MSEA were felt beyond the temporal boundaries defined by δ18O‐inferred monsoon intensity, and an initial wet period (or precursor event) may have preceded the local drying. Most existing Asian Monsoon proxy records of the 8.2 ka event may lack the resolution and/or multiproxy information necessary to establish local and regional hydrological sensitivity to abrupt climate change.

 
more » « less
NSF-PAR ID:
10480736
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
38
Issue:
12
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.

    Significance Statement

    We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.

     
    more » « less
  2. Abstract

    Here we present, to date, the highest‐resolved (~5 years) and most precisely dated Holocene monsoon climate reconstruction for the western Chinese Loess Plateau based on five replicated stalagmite δ18O records from Wuya Cave, eastern Gansu, China. Our record suggests the wettest period occurred between 10,500 and 6,600 a BP in this region. After this period, the amplitude of Asian summer monsoon decadal‐scale variability progressively increased likely in response to increasing ENSO frequency since the middle Holocene. Our study reveals similar asymmetric centennial‐scale double‐plunging structures of the 8.2, 5.5, and 2.8 ka events in the western Chinese Loess Plateau, suggesting a possible role of solar activity whose impact was amplified around 8.2 ka BP by the meltwater flood. In contrast, the 4.2 ka event exhibit gradually declining monsoon rainfall with centennial‐ to decadal‐scale fluctuations.

     
    more » « less
  3. Abstract. A large array of proxy recordssuggests that the “4.2ka event” marks an approximately300-year long period (∼3.9 to 4.2ka) ofmajor climate change across the globe. However, the climatic manifestation ofthis event, including its onset, duration, and termination, remains lessclear in the Indian summer monsoon (ISM) domain. Here, we present new oxygenisotope (δ18O) data from a pair of speleothems (ML.1 and ML.2)from Mawmluh Cave, Meghalaya, India, that provide a high-resolution record ofISM variability during a period (∼3.78 and 4.44ka) that fullyencompasses the 4.2ka event. The sub-annually to annually resolved ML.1δ18O record is constrained by 18 230Th dates with anaverage dating error of ±13 years (2σ) and a resolution of ∼40 years, which allows us to characterize the ISM variability withunprecedented detail. The inferred pattern of ISM variability during theperiod contemporaneous with the 4.2ka event shares broad similarities andkey differences with the previous reconstructions of ISM from the MawmluhCave and other proxy records from the region. Our data suggest that the ISMintensity, in the context of the length of our record, abruptly decreased at∼4.0ka (±13 years), marking the onset of a multi-centennialperiod of relatively reduced ISM, which was punctuated by at least twomulti-decadal droughts between ∼3.9 and 4.0ka. The latter stands outin contrast with some previous proxy reconstructions of the ISM, in which the4.2ka event has been depicted as a singular multi-centennial drought.

     
    more » « less
  4. Abstract

    The Yucatán Peninsula (YP) has a complex hydroclimate with many proposed drivers of interannual and longer‐term variability, ranging from coupled ocean–atmosphere processes to frequency of tropical cyclones. The mid‐Holocene, a time of higher Northern Hemisphere summer insolation, provides an opportunity to test the relationship between YP precipitation and ocean temperature. Here, we present a new, ∼annually resolved speleothem record of stable isotope (δ18O and δ13C) and trace element (Mg/Ca and Sr/Ca) ratios for a section of the mid‐Holocene (5.2–5.7 kyr BP), before extensive agriculture began in the region. A meter‐long stalagmite from Río Secreto, a cave system in Playa del Carmen, Mexico, was dated using U–Th geochronology and layer counting, yielding multidecadal age uncertainty (median 2SD of ±70 years). New proxy data were compared to an existing late Holocene stalagmite record from the same cave system, allowing us to examine changes in hydrology over time and to paleoclimate records from the southern YP. The δ18O, δ13C, and Mg/Ca data consistently indicate higher mean precipitation and lower precipitation variability during the mid‐Holocene compared to the late Holocene. Despite this reduced variability, multidecadal precipitation variations were persistent in regional hydroclimate during the mid‐Holocene. We therefore conclude that higher summer insolation led to increased mean precipitation and decreased precipitation variability in the northern YP but that the region is susceptible to dry periods across climate mean states. Given projected decreases in wet season precipitation in the YP’s near future, we suggest that climate mitigation strategies emphasize drought preparation.

     
    more » « less
  5. Abstract Speleothem δ 18 O is widely used as a proxy for rainfall amount in the tropics on glacial-interglacial to interannual scales. However, uncertainties in the interpretation of this renowned proxy pose a vexing problem in tropical paleoclimatology. Here, we present paired multi-proxy geochemical measurements for stalagmites from southwest Sulawesi, Indonesia, and confirm changes in rainfall amount across ice age terminations. Collectively, the stalagmites span two glacial-interglacial transitions from ~380,000 to 330,000 and 230,000 to 170,000 years ago. Mg/Ca in the slow-growing stalagmites is affected by water moving through the karst and prior calcite precipitation, making it a good proxy for changes in local rainfall. When paired, Mg/Ca and δ 18 O corroborate prominent shifts from drier glacials to wetter interglacials in the core of the Australasian monsoon domain. These shifts in rainfall occur 4,000-7,000 years later than glacial-interglacial increases in global temperature and the associated response of Sulawesi vegetation, determined by speleothem δ 13 C. 
    more » « less