Abstract Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS‐based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS‐observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer.
more »
« less
Shallow Water Seafloor Geodesy With Wave Glider‐Based GNSS‐Acoustic Surveying of a Single Transponder
Abstract Due to the blockage of seawater, seafloor displacement cannot be directly measured by space geodesy. The combination of Global Navigation Satellite Systems‐acoustic ranging (GNSS‐A) has been used to overcome the electromagnetic barrier, so that a GNSS‐determined sea surface vessel's coordinates can be transformed to seafloor benchmarks in a global reference frame. Due to the high cost and science priorities, previous GNSS‐A studies mainly targeted relatively deep water and a minimum of three transponders were used to form an array, equivalent to a precision geodetic station. With recent developments in unmanned autonomous surface vessels, low cost GNSS‐A surveys are poised to become practical. Here we demonstrate that with a carefully designed surveying trajectory, Wave Glider‐based GNSS‐A surveying of a single transponder in shallow water can provide centimeter‐level accuracy on horizontal seafloor positioning, even if the sound speed model deviates from the actual value by a few meters per second. Results from a nine‐month experiment conducted at ∼54 m water depth show that the repeatability of the seafloor horizontal positioning is better than 2 cm. When conditions allow, the acoustic observations should be collected symmetrically about the transponder and data redundancies are recommended to reduce the error associated with time‐dependent variations in sound speed.
more »
« less
- Award ID(s):
- 1935996
- PAR ID:
- 10480753
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 10
- Issue:
- 10
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Simple, analytically solvable models of normal mode propagation in the coastal ocean are developed and applied to study the effect of the seafloor bathymetry on modal travel times. Within the adiabatic approximation, horizontal inhomogeneity of the waveguide is found to change the modal dispersion curves in a way that helps separation of the modal components of the acoustic field using the time-warping transform. It is shown that moderate seafloor slopes can lead to surprisingly large errors in retrieved geoacoustic parameters and cause a positive bias in bottom sound speed estimates if horizontal refraction is ignored.more » « less
-
We have developed a low-cost approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. We equipped the University of Hawai‘i Liquid Robotics Wave Glider with an integrated acoustic telemetry package, a dual-frequency geodetic-grade global positioning system (GPS) receiver, meteorological pressure sensor, processing unit, and cellular communications. The Wave Glider interrogates high accuracy pressure sensors on the seafloor to retrieve their pressure and temperature data. We correct the seafloor pressure measurements using sea surface kinematic GPS location and atmospheric pressure data collected by the Wave Glider payload. By combining the concurrent seafloor and sea surface observations, we demonstrate the capability to provide timely, continuous, and high-accuracy estimation and monitoring of centimeter-scale vertical seafloor motions.more » « less
-
Hester Jiskoot (Ed.)Abstract We developed a multi-frequency, multi-Global Navigation Satellite System (GNSS) positioning instrument optimized for autonomous applications in the cryosphere. At lower power requirements and a fraction of the cost and weight compared to commercially available options, this instrument simplifies field usage and associated logistics. In this paper, we assess several baseline aspects of performance in a polar environment relative to geodetic receivers commonly used for glaciological applications. Evaluations of precision and relative accuracy of positioning show millimeter to centimeter-level (‘geodetic-grade’) quality of this instrument, making it a competitive alternative for GNSS glaciological and geophysical applications such as monitoring surface elevation change and ice flow. An array of these instruments, tested in the field on the Greenland Ice Sheet, also demonstrated robustness throughout the polar winter and met power and reliability requirements.more » « less
-
Abstract This study documents the capabilities of the StreamSonde, a lightweight (24 g) instrument manufactured by Skyfora that measures atmospheric temperature, pressure, humidity, and wind velocity. Unique features of the StreamSonde are its wind speed accuracy enabled by a dual-band Global Navigation Satellite System (GNSS) receiver, the ability to vary the terminal fall velocity, a theoretical maximum communication distance between the instrument and the deployment aircraft of 250 km, and the ability to simultaneously operate up to eight instruments (50 in the future). Skyfora’s GNSS receiver receives signals on two bands from U.S. global positioning system (GPS) (L1/L5), European Galileo (E1/E5a), and Chinese BeiDou (B1I/B2a) satellites to calculate the wind speed. The combination of dual GNSS and lower terminal fall velocity results in more accurate wind retrievals than from single-band GPS potentially allowing us calculate turbulence quantities, especially near the surface. StreamSondes were launched as dropsondes from the NOAA P-3 aircraft in both clear-air low-wind testing environments and in Hurricane Nigel (2023). The pressure, temperature, humidity (in clear air), and derived wind velocity collected by the StreamSonde compare favorably to the widely used RD41 dropsonde that was developed at the National Center for Atmospheric Research (NCAR) and is manufactured by Vaisala. At coreleased drops in Hurricane Nigel, mean absolute differences between RD41 dropsondes and StreamSondes are generally below 1°C for air temperature, 1.5 m s−1for wind speed, and 6° for wind direction. The benefits of using the StreamSonde instrument along with planned improvements to the platform are discussed. Significance StatementThis study presents proof of concept for operational deployment of a new, lightweight atmospheric profiler called the StreamSonde in a tropical cyclone. It uses advanced positioning technology to accurately measure three-dimensional wind velocity, has an adjustable terminal velocity, and can be deployed in “swarms” of sensors that have up to eight (50 in the future) instruments simultaneously active. The versatility of this emerging technology makes it useable for many meteorological applications.more » « less
An official website of the United States government
