skip to main content


Title: Lake Mendota long term water quality model
The data are associated with the following manuscript: Hanson, P. C., Ladwig, R., Buelo, C., Albright, E. A., Delany, A. D., & Carey, C. (2023). Legacy phosphorus and ecosystem memory control future water quality in a eutrophic lake. Lake water and ice observational data and lake bathymetry are from the North Temperate Lakes Long Term Ecological Research program. Brief abstract of the work: To investigate how water quality in Lake Mendota might respond to nutrient pollution reduction, we used computer models to simulate the elimination of phosphorus inputs from the catchment and track water quality change. The data herein are used to drive and calibrate the model. In addition, model code and simulation output are included as "other entities."  more » « less
Award ID(s):
1753657 2025982 1753854
NSF-PAR ID:
10480902
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Globally, phytoplankton abundance is increasing in lakes as a result of climate change and land‐use change. The relative importance of climate and land‐use drivers has been examined primarily for mesotrophic and eutrophic lakes. However, oligotrophic lakes show different sensitivity to climate and land‐use drivers than mesotrophic and eutrophic lakes, necessitating further exploration of the relative contribution of the two drivers of change to increased phytoplankton abundance. Here, we investigated how air temperature (a driver related to climate change) and nutrient load (a driver related to land‐use and climate change) interact to alter water quality in oligotrophic Lake Sunapee, New Hampshire, USA. We used long‐term data and the one‐dimensional hydrodynamic General Lake Model (GLM) coupled with Aquatic EcoDyanmics (AED) modules to simulate water quality. Over the 31‐year simulation, summer median chlorophyll‐aconcentration was positively associated with summer air temperature, whereas annual maximum chlorophyll‐aconcentration was positively associated with the previous 3 years of external phosphorus load. Scenario testing demonstrated a 2°C increase in air temperature significantly increased summer median chlorophyll‐aconcentration, but not annual maximum chlorophyll‐aconcentration. For both maximum and median chlorophyll‐aconcentration, doubling external nutrient loads of total nitrogen and total phosphorus at the same time, or doubling phosphorus alone, resulted in a significant increase. This study highlights the importance of aligning lake measurements with the ecosystem metrics of interest, as maximum chlorophyll‐aconcentration may be more uniquely sensitive to nutrient load and that typical summer chlorophyll‐aconcentration may increase due to warming alone.

     
    more » « less
  2. Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especially in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring. 
    more » « less
  3. Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures. 
    more » « less
  4. Abstract

    Absence of dissolved oxygen (anoxia) in the hypolimnion of lakes can eliminate habitat for sensitive species and may induce the release of sediment‐bound phosphorus. Lake anoxia generally results from decomposition of organic matter, which is exacerbated by high nutrient loads. Total phosphorus (TP) in lakes is regulated by static aspects of the lake’s watershed, but lake TP can be readily increased by human activities. In some low‐nutrient lakes, basin morphometry may induce naturally occurring anoxia. The occurrence of natural anoxia is especially important to consider in lake water quality assessments that compare observed conditions to expected reference conditions. To investigate the occurrence of natural vs. anthropogenically influenced anoxia, we constructed a logistic regression model to calculate the probability of low‐nutrient lakes (TP < 15 µg/L) developing aerial anoxic extent ≥10% by testing the predictive potential of variables related to basin morphometry, depths of lake thermal strata, epilimnetic TP, and dissolved organic carbon (DOC). Maximum lake depth and the proportion of lake area under the top of the metalimnion were the most important variables to predict the likelihood of hypolimnetic anoxia, which correctly predicted anoxic condition in 84% of lakes (Model 1). Adding TP as a third variable to Model 1 produced a significantly improved model (Model 2) but the prediction success rate was comparable (86%). We also present a model for lakes with limited bathymetric data, which predicts anoxia with 81% accuracy based on maximum lake depth and mean thermocline depth at peak stratification. DOC was relatively low (4.3 ± 1.5 mg/L [mean ± SD]) in the study lakes and its inclusion did not improve model performance. In Model 1, lakes with an anoxic extent ≥10% of lake area had significantly higher epilimnetic TP than lakes with oxic hypolimnia, regardless of prediction category or success. Our results indicate that including TP as a variable helps refine models based on morphometry alone, but lake morphometry and stratification dynamics are the most important factors in the development of anoxic extent in low‐nutrient temperate lakes. Our approach informs studies concerned with identifying key factors that influence regime shifts in a variety of ecosystems.

     
    more » « less
  5. Abstract

    Agricultural land use is typically associated with high stream nutrient concentrations and increased nutrient loading to lakes. For lakes, evidence for these associations mostly comes from studies on individual lakes or watersheds that relate concentrations of nitrogen (N) or phosphorus (P) to aggregate measures of agricultural land use, such as the proportion of land used for agriculture in a lake’s watershed. However, at macroscales (i.e., in hundreds to thousands of lakes across large spatial extents), there is high variability around such relationships and it is unclear whether considering more granular (or detailed) agricultural data, such as fertilizer application, planting of specific crops, or the extent of near‐stream cropping, would improve prediction and inform understanding of lake nutrient drivers. Furthermore, it is unclear whether lake N and P would have different relationships to such measures and whether these relationships would vary by region, since regional variation has been observed in prior studies using aggregate measures of agriculture. To address these knowledge gaps, we examined relationships between granular measures of agricultural activity and lake total phosphorus (TP) and total nitrogen (TN) concentrations in 928 lakes and their watersheds in the Northeastern and Midwest U.S. using a Bayesian hierarchical modeling approach. We found that both lake TN and TP concentrations were related to these measures of agriculture, especially near‐stream agriculture. The relationships between measures of agriculture and lake TN concentrations were more regionally variable than those for TP. Conversely, TP concentrations were more strongly related to lake‐specific measures like depth and watershed hydrology relative to TN. Our finding that lake TN and TP concentrations have different relationships with granular measures of agricultural activity has implications for the design of effective and efficient policy approaches to maintain and improve water quality.

     
    more » « less