skip to main content


This content will become publicly available on May 18, 2024

Title: Allosterically coupled conformational dynamics in solution prepare the sterol transfer protein StarD4 to release its cargo upon interaction with target membranes

Complex mechanisms regulate the cellular distribution of cholesterol, a critical component of eukaryote membranes involved in regulation of membrane protein functions directly and through the physiochemical properties of membranes. StarD4, a member of the steroidogenic acute regulator-related lipid-transfer (StART) domain (StARD)-containing protein family, is a highly efficient sterol-specific transfer protein involved in cholesterol homeostasis. Its mechanism of cargo loading and release remains unknown despite recent insights into the key role of phosphatidylinositol phosphates in modulating its interactions with target membranes. We have used large-scale atomistic Molecular dynamics (MD) simulations to study how the dynamics of cholesterol bound to the StarD4 protein can affect interaction with target membranes, and cargo delivery. We identify the two major cholesterol (CHL) binding modes in the hydrophobic pocket of StarD4, one near S136&S147 (the Ser-mode), and another closer to the putative release gate located near W171, R92&Y117 (the Trp-mode). We show that conformational changes of StarD4 associated directly with the transition between these binding modes facilitate the opening of the gate. To understand the dynamics of this connection we apply a machine-learning algorithm for the detection of rare events in MD trajectories (RED), which reveals the structural motifs involved in the opening of a front gate and a back corridor in the StarD4 structure occurring together with the spontaneous transition of CHL from the Ser-mode of binding to the Trp-mode. Further analysis of MD trajectory data with the information-theory based NbIT method reveals the allosteric network connecting the CHL binding site to the functionally important structural components of the gate and corridor. Mutations of residues in the allosteric network are shown to affect the performance of the allosteric connection. These findings outline an allosteric mechanism which prepares the CHL-bound StarD4 to release and deliver the cargo when it is bound to the target membrane.

 
more » « less
Award ID(s):
1741057
NSF-PAR ID:
10480967
Author(s) / Creator(s):
;
Publisher / Repository:
PubMed
Date Published:
Journal Name:
Frontiers in Molecular Biosciences
Volume:
10
ISSN:
2296-889X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lipid-anchored DNA can attach functional cargo to bilayer membranes in DNA nanotechnology, synthetic biology, and cell biology research. To optimize DNA anchoring, an understanding of DNA–membrane interactions in terms of binding strength, extent, and structural dynamics is required. Here we use experiments and molecular dynamics (MD) simulations to determine how the membrane binding of cholesterol-modified DNA depends on electrostatic and steric factors involving the lipid headgroup charge, duplexed or single-stranded DNA, and the buffer composition. The experiments distinguish between free and membrane vesicle-bound DNA and thereby reveal the surface density of anchored DNA and its binding affinity, something which had previously not been known. The Kd values range from 8.5 ± 4.9 to 466 ± 134 μM whereby negatively charged headgroups led to weak binding due to the electrostatic repulsion with respect to the negatively charged DNA. Atomistic MD simulations explain the findings and elucidate the dynamic nature of anchored DNA such as the mushroom-like conformation of single-stranded DNA hovering over the bilayer surface in contrast to a straight-up conformation of double-stranded DNA. The biophysical insight into the binding strength to membranes as well as the molecular accessibility of DNA for hybridization to molecular cargo is expected to facilitate the creation of biomimetic DNA versions of natural membrane nanopores and cytoskeletons for research and nanobiotechnology. 
    more » « less
  2. Abstract

    TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.

     
    more » « less
  3. Abstract

    Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution‐state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF‐I (N63A) or EF‐II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF‐II loop is the principal trigger for the conformational switch between ‘closed’ apo to the ‘open’ Ca2+‐bound conformation of the protein. Elimination of binding in S100‐specific EF‐I loop has limited impact on the calcium binding affinity of the EF‐II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF‐II loop significantly attenuates calcium affinity in the EF‐I loop and the structure adopts a ‘closed’ apo‐like conformation. Analysis of experimental amide nitrogen (15N) relaxation rates (R1,R2, and15N–{1H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico–nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C‐terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF‐I loop alone does not induce significant motions in the polypeptide chain, EF‐I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF‐II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.

     
    more » « less
  4. As the core component of the adherens junction in cell–cell adhesion, the cadherin–catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin–catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin–catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin–catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin–catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin–catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin–catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.

     
    more » « less
  5. Abstract

    The allosteric regulation of ADP–glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme fromAgrobacterium tumefaciensis activated by fructose 6‐phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of theA. tumefaciensADP‐glucose pyrophosphorylase. By X‐ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate‐binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP‐glucose pyrophosphorylase fromA. tumefacienshave two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.

     
    more » « less