skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Porous bipolar polymers as organic cathodes for sustainable sodium/potassium-ion batteries
Bipolar porous polymers bearing carbonyl and amine groups were designed and synthesized as cathode materials in Na-ion and K-ion batteries, demonstrating great promise for high-performance and sustainable batteries.  more » « less
Award ID(s):
2000102
PAR ID:
10481030
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
11
Issue:
31
ISSN:
2050-7488
Page Range / eLocation ID:
16636 to 16647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sodium‐ion batteries have attracted extensive interest as a promising solution for large‐scale electrochemical energy storage, owing to their low cost, materials abundance, good reversibility, and decent energy density. For sodium‐ion batteries to achieve comparable performance to current lithium‐ion batteries, significant improvements are still required in cathode, anode, and electrolyte materials. Understanding the functioning and degradation mechanisms of the materials is essential. Computational techniques have been widely applied in tandem with experimental investigations to provide crucial fundamental insights into electrode materials and to facilitate the development of materials for sodium‐ion batteries. Herein, the authors review computational studies on electrode materials in sodium‐ion batteries. The authors summarize the current state‐of‐the‐art computational techniques and their applications in investigating the structure, ordering, diffusion, and phase transformation in cathode and anode materials for sodium‐ion batteries. The unique capability and the obtained knowledge of computational studies as well as the perspectives for sodium‐ion battery materials are discussed in this review. 
    more » « less
  2. Abstract Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaxMyCl6(M = La–Sm) with UCl3-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications. 
    more » « less
  3. Abstract Intermittent renewable energy sources can mitigate climate change, but they require high-performance, reliable batteries. The widely used lithium-ion batteries contain Li, Co, and Ni, and the growing demand for these elements, together with their relatively limited sources, has raised concerns about their supply chain stability. Sodium-ion batteries have become an economical alternative. Sodium vanadium phosphate, Na3V2(PO4)3 (NVP), is a compelling candidate with high stability and ionic conductivity due to its polyanionic sodium superionic conductor (NASICON) structure. However, NVP suffers from poor electronic conductivity and requires hierarchical morphology to allow facile ion and electron transfer. Spray-drying has been used to achieve hierarchical secondary particle structures, but the foremost reported NVP syntheses rely on either flammable/toxic organic solvents or expensive nanocarbon additives. In this study, we spray-dry an aqueous suspension without using expensive carbon additives. The obtained NVP sodium-ion half cells showed very high reversible capacity (114.7 mAh g-1 at 0.2C), high rate capability (80.8% capacity retention at 30C), and stable cycling performance (96.7% capacity retention after 1,500 cycles at 10C). This superior performance demonstrates the great promise for NVP batteries as an alternative energy storage option to traditional lithium-ion batteries. 
    more » « less
  4. Abstract Resources used in lithium‐ion batteries are becoming more expensive due to their high demand, and the global cobalt market heavily depends on supplies from countries with high geopolitical risks. Alternative battery technologies including magnesium‐ion batteries are therefore desirable. Progress toward practical magnesium‐ion batteries are impeded by an absence of suitable anodes that can operate with conventional electrolyte solvents. Although alloy‐type magnesium‐ion battery anodes are compatible with common electrolyte solvents, they suffer from severe failure associated with huge volume changes during cycling. Consequently, achieving more than 200 cycles in alloy‐type magnesium‐ion battery anodes remains a challenge. Here an unprecedented long‐cycle life of 1000 cycles, achieved at a relatively high (dis)charge rate of 3 C (current density: 922.5 mA g−1) in Mg2Ga5alloy‐type anode, taking advantage of near‐room‐temperatures solid–liquid phase transformation between Mg2Ga5(solid) and Ga (liquid), is demonstrated. This concept should open the way to the development of practical anodes for next‐generation magnesium‐ion batteries. 
    more » « less
  5. Na-ion batteries have taken more interest in recent years as an alternative battery chemistry to Li-ion batteries because of material abundance, cost, and sufficient volumetric energy density for large-scale energy storage applications. However, Na-ion batteries suffer from rapid capacity fade associated with chemo-mechanical instabilities such as the formation of resistive solid-electrolyte / cathode-electrolyte interphase (SEI/CEI) layers, irreversible phase formations, and particle fracture. The cathode materials are fragile, especially metal oxides, therefore Na-ion cathodes are more prone to mechanical deformations upon larger volumetric expansions/reductions during Na-ion intercalation. Electrolyte additives have been utilized to improve the electrochemical performance of Li-ion and Na-ion batteries by modifying the chemistry of the SEI layers. In situ stress measurements on Si anode in Li-ion batteries demonstrated the generation of less mechanical deformations in the electrode when cycled in the presence of FEC additives.1However, there is not much known about the impact of electrolyte additives on the chemo-mechanical properties of CEI layers in Na-ion battery cathodes. Furthermore, the question still stands about how the electrolyte additives may impact the mechanical stability of the Na-ion cathodes. To address this gap, we systematically investigated the role of FEC additives on the electrochemical performance and associated chemo-mechanical instabilities in NaCrO2 cathodes. Experiments were performed in organic electrolytes with/without FEC additives. First, the talk will start with presenting the impact of FEC additives on the capacity retention and cyclic voltammeter profiles of NaCrO2 cathodes. Then, digital image correlation and multi-beam optical stress sensor techniques were employed to probe electrochemical strain and stress generation in the composite NaCrO2 cathodes during electrochemical cycling in organic electrolytes with/without FEC additives. Surface chemistry of the NaCrO2 cathodes after cycling was investigated with the FT-IR measurements. In summary, the talk will present contrast differences in the electrochemical and chemo-mechanical properties of NaCrO2 cathodes when cycled in the presence of the FEC additives. Acknowledgement: This work is supported by National Science Foundation (award number 2321405). Reference: 1) Tripathi et al 2023 J. Electrochem. Soc. 170 090544 
    more » « less