skip to main content


Search for: All records

Award ID contains: 2000102

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 24, 2025
  2. Sodium‐on batteries (SIBs) are promising alternatives to lithium‐ion batteries (LIBs) because of the low cost, abundance, and high sustainability of sodium resources. Analogous to LIBs, the high‐capacity electrodes in SIBs always suffer from rapid capacity decay upon long‐term cycling due to the particle pulverization induced by a large volume change. Circumventing particle pulverization plays a critical role in developing high‐energy and long‐life SIBs. Herein, tetrahydroxy‐1,4‐benzoquinone disodium salt (TBDS) that can self‐heal the cracks by hydrogen bonding between hydroxyl group and carbonyl group is employed as a cathode for sustainable and stable SIBs. The self‐healing TBDS exhibits long cycle life of 1000 cycles with a high rate capability up to 2 A g−1due to the fast Na‐ion diffusion reaction in the TBDS cathode. The intermolecular hydrogen bonding has been comprehensively characterized to understand the self‐healing mechanism. The hydrogen bonding‐enabled self‐healing organic materials are promising for developing high‐energy and long‐cycle‐life SIBs.

     
    more » « less
  3. Bipolar porous polymers bearing carbonyl and amine groups were designed and synthesized as cathode materials in Na-ion and K-ion batteries, demonstrating great promise for high-performance and sustainable batteries.

     
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  4. Despite extensive research efforts in developing aqueous rechargeable zinc metal batteries (RZMBs) as high-energy-density alternatives to both lithium ion and lithium metal batteries, the commercial prospects for RZMBs are still obfuscated by fundamental scientific questions. In particular, the electrode–electrolyte interphase properties and behaviors are still intensely debated topics in this field. In this review, we provide a comprehensive and thorough overview of the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) in aqueous RZMBs, with an emphasis on the formation mechanisms and characteristics of the SEI and CEI. We then summarize state-of-the-art techniques for characterizing the SEI/CEI to reveal the intrinsic correlation between the functionalities of the interphases and the electrochemical performances. Finally, future directions are proposed, including studies on aqueous SEI/CEI evolution as a function of pH and temperature, as well as SEI/CEI studies for high-energy-density and long-lifetime RZMBs. 
    more » « less