skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the potential distribution of the threatened Grey-necked Picathartes Picathartes oreas across its entire range
Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat for the Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”.  more » « less
Award ID(s):
1933351
PAR ID:
10481059
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Bird Conservation International
Volume:
33
ISSN:
0959-2709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given the scale and speed of contemporary environmental changes, intensive conservation interventions are increasingly being proposed that would assist the evolution of adaptive traits in threatened species. The ambition of these projects is tempered by a number of concerns, including the potential maladaptation of manipulated organisms for contemporary and future climatic conditions in their historical ranges. Following the guidelines of the International Union for the Conservation of Nature, we use a species distribution model (SDM) to consider the potential impact of climate change on the distribution and quantity of suitable habitat for American chestnut (Castanea dentata), a functionally extinct forest species that has been the focus of various restoration efforts for over 100 years. Consistent with other SDMs for North American trees, our model shows contraction of climatically suitable habitat for American chestnut within the species’ historical range and the expansion of climatically suitable habitat in regions to the north of it by 2080. These broad changes have significant implications for restoration practice. In particular, they highlight the importance of germplasm conservation, local adaptation, and addressing knowledge gaps about the interspecific interactions of American chestnut. More generally, this model demonstrates that the goals of assisted evolution projects, which often aim to maintain species in their native ranges, need to account for the uncertainty and novelty of future environmental conditions. 
    more » « less
  2. Rüppell's vultures are critically endangered, primarily due to anthropogenic activities such as habitat degradation, climate change, and intentional and unintentional poisoning, which have led to the loss of nesting and breeding sites. To aid in the conservation and protection of these species, habitat evaluation and niche mapping are crucial. Species distribution modeling (SDM) is a valuable tool in conservation planning, providing insights into the ecological requirements of species under conservation concerns. This study employed an ensembling modeling approach to assess the habitat suitability and distribution of Rüppell's vultures across Kenya. We utilized four algorithms; Gradient Boosting Machine, Generalized Linear Model, Generalized Additive Model, and Random Forest. Data on Rüppell's vultures were sourced from the Global Biodiversity Information Facility, while key environmental variables influencing the species' distribution were obtained from WorldClim. The resultant species distribution map was overlaid with a conservation area map to evaluate the overlap between suitable habitats and existing protected areas. Our analysis identified suitable habitats in regions such as the Masai Mara Game Reserve, Mount Kenya National Park, Nairobi National Park, Tsavo East National Park, and Hell's Gate National Park, with the majority of these habitats located outside protected areas, except those within Hell's Gate National Park. Precipitation and elevation emerged as the primary environmental predictors of the distribution of Rüppell's vultures. Based on these findings, we recommend establishing vulture sanctuaries in suitable habitats and hotspots to enhance the conservation of Rüppell's vultures outside the protected areas. 
    more » « less
  3. ABSTRACT Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding area (the “neighborhood”). We implement its use for a forest‐dwelling species (Handleyomys chapmani) considered threatened by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suitability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy (AOO), two metrics used by the IUCN for threat level categorization. The values estimated here suggest removing the species from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2 × 2 km grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the practicality of using habitat‐refined distribution maps for biogeography and conservation. 
    more » « less
  4. Abstract Intensity and severity of bushfires in Australia have increased over the past few decades due to climate change, threatening habitat loss for numerous species. Although the impact of bushfires on vertebrates is well‐documented, the corresponding effects on insect taxa are rarely examined, although they are responsible for key ecosystem functions and services. Understanding the effects of bushfire seasons on insect distributions could elucidate long‐term impacts and patterns of ecosystem recovery.Here, the authors investigated the effects of recent bushfires, land‐cover change, and climatic variables on the distribution of a common and endemic dragonfly, the swamp tigertail (Synthemis eustalacta) (Burmeister, 1839), which inhabits forests that have recently undergone severe burning. The authors used a temporally dynamic species distribution modelling approach that incorporated 20 years of community‐science data on dragonfly occurrence and predictors based on fire, land cover, and climate to make yearly predictions of suitability. The authors also compared this to an approach that combines multiple temporally static models that use annual data.The authors found that for both approaches, fire‐specific variables had negligible importance for the models, while the percentage of tree and non‐vegetative cover were most important. The authors also found that the dynamic model outperformed the static ones, based on cross‐validation omission rate. Model predictions indicated temporal variation in area and spatial arrangement of suitable habitat, but no patterns of habitat expansion, contraction, or shifting.These results highlight not only the efficacy of dynamic modelling to capture spatiotemporal variables such as vegetation cover for an endemic insect species, but also provide a novel approach to mapping species distributions with sparse locality records. 
    more » « less
  5. Argentina lies within the southernmost distributional range of five neotropical primates, the brown howler monkey Alouatta guariba, the black-and-gold howler monkey Alouatta caraya, the black-horned capuchin Sapajus nigritus, the Azara’s capuchin Sapajus cay, and the Azara’s owl monkey Aotus azarae; the first three of which are globally threatened. These species occupy different ecoregions: the Alto Paraná Atlantic forest, the Araucaria moist forest, the humid Chaco, the Southern Cone Mesopotamian savanna, the Paraná Ffooded savanna, and the Southern Andean Yungas. The recently approved National Primate Conservation Plan of Argentina calls for identifying priority areas to focus conservation actions for these species. We used species distribution models to estimate species ranges and then used the Zonation software to perform a spatial conservation prioritization analysis based on primate habitat quality and connectivity to identify potential areas of importance at national and ecoregional levels. Only 7.2% (19,500 km2) of the area inhabited by primates in Argentina is under protection. Outside the current protected areas, the top-ranked 1% and 5% priority areas identified in our analysis covered 1894 and 7574 km2, respectively. The top 1% areas were in the Atlantic forest of Misiones province, where S. nigritus, A. guariba, and A. caraya are distributed, and in the humid portion of eastern Chaco and Formosa provinces, where A. azarae and A. caraya are present. The top 5% areas included portions of the Yungas, where S. cay is the only primate present. Priority areas in Chaco and Formosa provinces are particularly relevant because of the paucity of protected areas and the high deforestation rate. The endangered A. guariba population will benefit from the better protection of the priority areas of Misiones. The potential priority areas proposed herein, considered within a context of a broad participatory process involving relevant stakeholders and local people, will help guide new and innovative conservation policies and practices while supporting management objectives. 
    more » « less