Biomechanical and user comfort data for the journal paper Using Biomechanical Signals and Gaussian Process Regression to Model Ankle Exoskeleton User Comfort. The data includes ground reaction forces, kinematic data (both marker positions and joint angles and velocity), kinetic data (joint moments and powers), metabolic cost, and comfort data for 13 subjects walking with a bilateral pair of ankle exoskeletons.
more »
« less
Validation of a modified visual analogue scale to measure user-perceived comfort of a lower-limb exoskeleton
User perceived exoskeleton comfort is likely important for device acceptance, but there is currently no validated instrument to measure it. The Visual Analogue Scale (VAS) is an existing tool to measure subjective human feedback by asking the user to mark a point on a line with each end of the line representing an opposing anchor statement. It can be modified to show the previous response, allowing the subject to directly indicate if the current condition is better or worse than the previous one. The goal of this study was to determine how well the modified VAS could measure user-perceived comfort as the exoskeleton control parameters were varied. To validate the survey, 14 healthy subjects walked in a pair of ankle exoskeletons with approximately ten distinct sets of control parameters tested in a prescribed order. Each set of control parameters was tested twice. After each trial, user-perceived comfort was measured using a two-question VAS survey. The repeatability coefficient was approximately 40 mm, similar to the total range of responses. The results were also inconsistent, with relative rankings between consecutive pairs of conditions matching for approximately 50% of comparisons. Thus, as tested, the VAS was not repeatable or consistent. It is possible that subject adaptation within the trial and over the course of the experiment may have impacted the results. Additional work is needed to develop a repeatable method to measure comfort and to determine how perceived comfort varies as subjects’ gain exoskeleton experience.
more »
« less
- Award ID(s):
- 1930430
- PAR ID:
- 10481070
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents the design and implementation of a novel multi-activity control strategy for a backdrivable knee-ankle exoskeleton. Traditionally, exoskeletons have used trajectory-based control of highly geared actuators for complete motion assistance. In contrast, we develop a potential energy shaping controller with ground reaction force (GRF) feedback that facilitates multi-activity assistance from a backdrivable exoskeleton without prescribing pre-defined kinematics. Although potential energy shaping was previously implemented in an exoskeleton to reduce the user’s perceived gravity, this model-based approach assumes the stance leg is fully loaded with the weight of the user, resulting in excessive control torques as weight transfers to the contralateral leg during double support. The presented approach uses GRF feedback to taper the torque control output for any activity involving multiple supports, leading to a closer match with normative joint moments in simulations based on pre-recorded human data during level walking. To implement this strategy, we present a custom foot force sensor that provides GRF feedback to the previously designed exoskeleton. Finally, results from an able-bodied human subject experiment demonstrate that the exoskeleton is able to reduce muscular activation of the primary muscles related to the knee and ankle joints during sit-to-stand, stand-to-sit, level walking, and stair climbing.more » « less
-
Objective: Haptic perception is an important component of bidirectional human-machine interactions that allow users to better interact with their environment. Artificial haptic sensation along an individual’s hand can be evoked via noninvasive electrical nerve stimulation; however, continuous stimulation can result in adaptation of sensory perception over time. In this study, we sought to quantify the adaptation profile via the change in perceived sensation intensity over time. Approach: Noninvasive stimulation of the peripheral nerve bundles evoked haptic perception using a 2x5 electrode grid placed along the medial side of the upper arm near the median and ulnar nerves. An electrode pair that evoked haptic sensation along the forearm and hand was selected. During a trial of 110-s of continuous stimulation, a constant stimulus amplitude just below the motor threshold was delivered. Each subject was instructed to press on a force transducer producing a force amplitude matched with the perceived intensity of haptic sensation. Main Findings: A force decay (i.e., intensity of sensation) was observed in all 7 subjects. Variations in the rate of decay and the start of decay across subjects were also observed. Significance: The preliminary findings established the sensory adaptation profile of peripheral nerve stimulation. Accounting for these subject-specific profiles of adaptation can allow for more stable communication between a robotic device and a user. Additionally, sensory adaptation characterization can promote the development of new stimulation strategies that can mitigate these observed adaptations, allowing for a better and more stable human-machine interaction experience.more » « less
-
Introduction As mobile robots proliferate in communities, designers must consider the impacts these systems have on the users, onlookers, and places they encounter. It becomes increasingly necessary to study situations where humans and robots coexist in common spaces, even if they are not directly interacting. This dataset presents a multidisciplinary approach to study human-robot encounters in an indoor apartment-like setting between participants and two mobile robots. Participants take questionnaires, wear sensors for physiological measures, and take part in a focus group after experiments finish. This dataset contains raw time series data from sensors and robots, and qualitative results from focus groups. The data can be used to analyze measures of human physiological response to varied encounter conditions, and to gain insights into human preferences and comfort during community encounters with mobile robots. Dataset Contents A dictionary of terms found in the dataset can be found in the "Data-Dictionary.pdf" Synchronized XDF files from every trial with raw data from electrodermal activity (EDA), electrocardiography (ECG), photoplethysmography (PPG) and seismocardiography (SCG). These synchronized files also contain robot pose data and microphone data. Results from analysis of two important features found from heart rate variability (HRV) and EDA. Specifically, HRV_CMSEn and nsEDRfreq is computed for each participant over each trial. These results also include Robot Confidence, which is a classification score representing the confidence that the 80 physiological features considered originate from a subject in a robot encounter. The higher the score, the higher the confidence A vectormap of the environment used during testing ("AHG_vectormap.txt") and a csv with locations of participant seating within the map ("Participant-Seating-Coordinates.csv"). Each line of the vectormap represents two endpoints of a line: x1,y1,x2,y2. The coordinates of participant seating are x,y positions and rotation about the vertical axis in radians. Anonymized videos captured using two static cameras placed in the environment. They are located in the living room and small room, respectively. Animations visualized from XDF files that show participant location, robot behaviors and additional characteristics like participant-robot line-of-sight and relative audio volume. Quotes associated with themes taken from focus group data. These quotes demonstrate and justify the results of the thematic analysis. Raw text from focus groups is not included for privacy concerns. Quantitative results from focus groups associated with factors influencing perceived safety. These results demonstrate the findings from deductive content analysis. The deductive codebook is also included. Results from pre-experiment and between-trial questionnaires Copies of both questionnaires and the semi-structured focus group protocol. Human Subjects This dataset contain de-identified information for 24 total subjects over 13 experiment sessions. The population for the study is the students, faculty and staff at the University of Texas at Austin. Of the 24 participants, 18 are students and 6 are staff at the university. Ages range from 19-48 and there are 10 males and 14 females who participated. Published data has been de-identified in coordination with the university Internal Review Board. All participants signed informed consent to participate in the study and for the distribution of this data. Access Restrictions Transcripts from focus groups are not published due to privacy concerns. Videos including participants are de-identified with overlays on videos. All other data is labeled only by participant ID, which is not associated with any identifying characteristics. Experiment Design Robots This study considers indoor encounters with two quadruped mobile robots. Namely, the Boston Dynamics Spot and Unitree Go1. These mobile robots are capable of everyday movement tasks like inspection, search or mapping which may be common tasks for autonomous agents in university communities. The study focus on perceived safety of bystanders under encounters with these relevant platforms. Control Conditions and Experiment Session Layout We control three variables in this study: Participant seating social (together in the living room) v. isolated (one in living room, other in small room) Robots Together v. Separate Robot Navigation v. Search Behavior A visual representation of the three control variables are shown on the left in (a)-(d) including the robot behaviors and participant seating locations, shown as X's. Blue represent social seating and yellow represent isolated seating. (a) shows the single robot navigation path. (b) is the two robot navigation paths. In (c) is the single robot search path and (d) shows the two robot search paths. The order of behaviors and seating locations are randomized and then inserted into the experiment session as overviewed in (e). These experiments are designed to gain insights into human responses to encounters with robots. The first step is receiving consent from the followed by a pre-experiment questionnaire that documents demographics, baseline stress information and big 5 personality traits. The nature video is repeated before and after the experimental session to establish a relaxed baseline physiological state. Experiments take place over 8 individual trials, which are defined by a subject seat arrangement, search or navigation behavior, and robots together or separate. After each of the 8 trials, participants take the between trial questionnaire, which is a 7 point Likert scale questionnaire designed to assess perceived safety during the preceding trial. After experiments and sensor removal, participants take part in a focus group. Synchronized Data Acquisition Data is synchronized from physiological sensors, environment microphones and the robots using the architecture shown. These raw xdf files are named using the following file naming convention: Trials where participants sit together in the living room [Session number]-[trial number]-social-[robots together or separate]-[search or navigation behavior].xdf Trials where participants are isolated [Session number]-[trial number]-isolated-[subject ID living room]-[subject ID small room]-[robots together or separate]-[search or navigation behavior].xdf Qualitative Data Qualitative data is obtained from focus groups with participants after experiments. Typically, two participants take part however two sessions only included one participant. The semi-structured focus group protocol can be found in the dataset. Two different research methods are applied to focus group transcripts. Note: the full transcripts are not provided for privacy concerns. First, we performed a qualitative content analysis using deductive codes found from an existing model of perceived safety during HRI (Akalin et al. 2023). The quantitative results from this analysis are reported as frequencies of references to the various factors of perceived safety. The codebook describing these factors is included in the dataset. Second, an inductive thematic analysis was performed on the data to identify emergent themes. The resulting themes and associated quotes taken from focus groups are also included. Data Organization Data is organized in separate folders, namely: animation-videos anonymized-session-videos focus-group-results questionnaire-responses research-materials signal-analysis-results synchronized-xdf-data Data Quality Statement In limited trials, participant EDA or ECG signals or robot pose information may be missing due to connectivity issues during data acquisition. Additionally, the questionnaires for Participant ID0 and ID1 are incomplete due to an error in the implementation of the Qualtrics survey instrument used.more » « less
-
null (Ed.)Task-invariant control methods for powered exoskeletons provide flexibility in assisting humans across multiple activities and environments. Energy shaping control serves this purpose by altering the human body’s dynamic characteristics in closed loop. Our previous work on potential energy shaping alters the gravitational vector to reduce the user’s perceived gravity, but this method cannot provide velocity-dependent assistance. The interconnection and damping assignment passivity-based control (IDA-PBC) method provides more freedom to shape a dynamical system’s energy through the interconnection structure of a port-controlled Hamiltonian system model. This paper derives a novel energetic control strategy based on IDA-PBC for a backdrivable knee-ankle exoskeleton. The control law provides torques that depend on various basis functions related to gravitational and gyroscopic terms. We optimize a set of constant weighting parameters for these basis functions to obtain a control law that produces able-bodied joint torques during walking on multiple ground slopes. We perform experiments with an able-bodied human subject wearing a knee-ankle exoskeleton to demonstrate reduced activation in certain lower-limb muscles.more » « less
An official website of the United States government

