The metabolic activity of water-limited ecosystems is strongly linked to the timing and magnitude of precipitation pulses that can trigger disproportionately high (i.e., hot-moments) ecosystem CO2 fluxes. We analyzed over 2-years of continuous measurements of soil CO2 efflux (Fs) under vegetation (Fsveg) and at bare soil (Fsbare) in a water-limited grassland. The continuous wavelet transform was used to: (a) describe the temporal variability of Fs; (b) test the performance of empirical models ranging in complexity; and (c) identify hot-moments of Fs. We used partial wavelet coherence (PWC) analysis to test the temporal correlation between Fs with temperature and soil moisture. The PWC analysis provided evidence that soil moisture overshadows the influence of soil temperature for Fs in this water limited ecosystem. Precipitation pulses triggered hot-moments that increased Fsveg (up to 9000%) and Fsbare (up to 17,000%) with respect to pre-pulse rates. Highly parameterized empirical models (using support vector machine (SVM) or an 8-day moving window) are good approaches for representing the daily temporal variability of Fs, but SVM is a promising approach to represent high temporal variability of Fs (i.e., hourly estimates). Our results have implications for the representation of hot-moments of ecosystem CO2 fluxes in these globally distributed ecosystems.
more »
« less
Single-shot observation of nonlinear pulse splitting in a Kerr medium
We report single-shot, time-resolved observation of self-steepening and temporal splitting of near-infrared, 50 fs, micro-joule pulses propagating nonlinearly in flint (SF11) glass. A coherent, smooth-profiled, 60-nm-bandwidth probe pulse that propagated obliquely to the main pulse through the Kerr medium recorded a time sequence of longitudinal projections of the main pulse’s induced refractive index profile in the form of a phase-shift “streak,” in which frequency–domain interferometry recovered with ∼10 fs temporal resolution. A three-dimensional simulation based on a unidirectional pulse propagation equation reproduced observed pulse profiles.
more »
« less
- PAR ID:
- 10481071
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 49
- Issue:
- 1
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 73
- Size(s):
- Article No. 73
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As a branch of laser powder bed fusion, selective laser sintering (SLS) with femtosecond (fs) lasers and metal nanoparticles (NPs) can achieve high precision and dense submicron features with reduced residual stress, due to the extremely short pulse duration. Successful sintering of metal NPs with fs laser is challenging due to the ablation caused by hot electron effects. In this study, a double-pulse sintering strategy with a pair of time- delayed fs-laser pulses is proposed for controlling the electron temperature while still maintaining a high enough lattice temperature. We demonstrate that when delay time is slightly longer than the electron-phonon coupling time of Cu NPs, the ablation area was drastically reduced and the power window for successful sintering was extended by about two times. Simultaneously, the heat-affected zone can be reduced by 66% (area). This new strategy can be adopted for all the SLS processes with fs laser and unlock the power of SLS with fs lasers for future applications.more » « less
-
We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C–S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.more » « less
-
We demonstrate loss-free generation of 3 mJ, 1 kHz, few-cycle (5 fs at 750 nm central wavelength) double pulses with a pulse peak separation from 10 to 100 fs, using a helium-filled hollow core fiber (HCF) and chirped mirror compressor. Crucial to our scheme are simulation-based modifications to the spectral phase and amplitude of the oscillator seed pulse to eliminate the deleterious effects of self-focusing and nonlinear phase pickup in the chirped pulse amplifier. The shortest pulse separations are enabled by tunable nonlinear pulse splitting in the HCF compressor.more » « less
-
Abstract The creation of localized bulk modification using femtosecond pulses inside semiconductors like silicon (Si) is quite challenging, whereas it is not difficult to achieve it for dielectric materials like fused silica (FS). This report addresses the fundamental origin of this issue. By taking a simple numerical approach, it has been found that in FS we can deliver stronger fluence due to self-focusing at higher power levels compared to Si. The origin for the above lies in the spatio-temporal pulse-splitting behavior, which is dominant in the case of FS at the focus, whereas, for Si, it is only effective after focus. We have also considered the influence of plasma and Kerr terms to elucidate the reason behind these nonlinearities. For the FS case, omission of Kerr term dominates, whereas, for Si, the influence of each term does not significantly create self-focusing like FS under a similar focusing condition. This study could provide an important guideline for researchers to understand the complexity of laser-matter interaction in transparent materials specifically being studied by many laser-processing industries.more » « less
An official website of the United States government
