skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Loss-free shaping of few-cycle terawatt laser pulses
We demonstrate loss-free generation of 3 mJ, 1 kHz, few-cycle (5 fs at 750 nm central wavelength) double pulses with a pulse peak separation from 10 to 100 fs, using a helium-filled hollow core fiber (HCF) and chirped mirror compressor. Crucial to our scheme are simulation-based modifications to the spectral phase and amplitude of the oscillator seed pulse to eliminate the deleterious effects of self-focusing and nonlinear phase pickup in the chirped pulse amplifier. The shortest pulse separations are enabled by tunable nonlinear pulse splitting in the HCF compressor.  more » « less
Award ID(s):
2010511
PAR ID:
10494013
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
6
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1433
Size(s):
Article No. 1433
Sponsoring Org:
National Science Foundation
More Like this
  1. Few-cycle pulses were generated by passing a beam from a cryogenically cooled Fe:ZnSe chirped-pulse amplifier (CPA) at a repetition rate of 400 Hz through a gas-filled hollow core fiber (HCF) followed by dispersion-compensating bulk CaF2. The krypton-filled fiber at 370 kPa yielded 1.14-mJ, 42-fs pulses centered at 4.07 µm, while the oxygen-filled fiber at 310 kPa delivered 0.78-mJ, 39-fs pulses spanning from 3 to 5.5 µm. This work is a step toward a high repetition rate mid-wave infrared driver of isolated attosecond keV x-ray pulses. 
    more » « less
  2. We show that soliton pulse compression in lithium niobate nanophotonics can enable formation of few-cycle pulses. We experimentally confirm such nonlinear dynamics and measure chirped 44-fs output pulses consistent with numerical simulations. 
    more » « less
  3. 3.2-mJ, 92-fs pulses centered at 3.1 µm are generated at a 1-kHz repetition rate through a tabletop optical parametric chirped pulse amplification (OPCPA) system based on ZnGeP2crystals. Pumped by a 2-µm chirped pulse amplifier with a flat-top beam profile, the amplifier achieves a 16.5% overall efficiency, which, to the best of our knowledge, is the highest efficiency achieved by OPCPA at this wavelength. Harmonics up to the seventh order are observed after focusing the output in the air. 
    more » « less
  4. While there has been success in Wakefield acceleration of electrons, there are a number of applications that could benefit from acceleration to modest energy (~MeV) by the laser field, for example, ultrafast electron diffraction and injection into higher-energy laser-driven accelerators. Here we outline our scheme for ponderomotive acceleration of electrons (and in principle, positrons) in which we control the group velocity of ultrafast pulses through pulse front tilt. Provided the intensity is above the threshold for capture of electrons, the leading part of the pulse front effectively acts like a moving mirror whose shape is controlled by the spatio-temporal topology of the intensity profile. Our analytic models of the propagation of spatially-chirped beams, simple relativistic single-particle models of the laser-electron interaction and our implementation of these beams in particle-in-cell simulations help to predict the output electron energy and direction. We are preparing experiments on the ALEPH laser system at Colorado State University in which we will use the diagnostic techniques that we have developed to align our scaled-up design of a high-energy pulse compressor that will deliver spatially chirped pulses. 
    more » « less
  5. The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics. 
    more » « less