Abstract DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation inPeromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscusclocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude inPeromyscus. The human-Peromyscusepigenetic clocks are expected to provide a significant boost to the attractiveness ofPeromyscusas a biological model.
more »
« less
Universal DNA methylation age across mammalian tissues
Abstract Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
more »
« less
- Award ID(s):
- 2017803
- PAR ID:
- 10481148
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Aging
- Date Published:
- Journal Name:
- Nature Aging
- Volume:
- 3
- Issue:
- 9
- ISSN:
- 2662-8465
- Page Range / eLocation ID:
- 1144 to 1166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although multiple high-performing epigenetic aging clocks exist, few are based directly on gene expression. Such transcriptomic aging clocks allow us to extract age-associated genes directly. However, most existing transcriptomic clocks model a subset of genes and are limited in their ability to predict novel biomarkers. With the growing popularity of single-cell sequencing, there is a need for robust single-cell transcriptomic aging clocks. Moreover, clocks have yet to be applied to investigate the elusive phenomenon of sex differences in aging. We introduce TimeFlies, a pan-cell-type scRNA-seq aging clock for theDrosophila melanogasterhead. TimeFlies uses deep learning to classify the donor age of cells based on genome-wide gene expression profiles. Using explainability methods, we identified key marker genes contributing to the classification, with lncRNAs showing up as highly enriched among predicted biomarkers. The top biomarker gene across cell types is lncRNA:roX1, a regulator of X chromosome dosage compensation, a pathway previously identified as a top biomarker of aging in the mouse brain. We validated this finding experimentally, showing a decrease in survival probability in the absence of roX1in vivo. Furthermore, we trained sex-specific TimeFlies clocks and noted significant differences in model predictions and explanations between male and female clocks, suggesting that different pathways drive aging in males and females. Graphical Abstractmore » « less
-
Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or “disorder” in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.more » « less
-
Age and early life adversity (ELA) are both key determinants of health, but whether they target similar physiological mechanisms across the body is unknown due to limited multi-tissue datasets from well-characterized cohorts. We generated DNA methylation (DNAm) profiles across 14 tissues in 237 semi-free ranging rhesus macaques, with records of naturally occurring ELA. We show that age-associated DNAm variation is predominantly tissue-dependent, yet tissue-specific epigenetic clocks reveal that the pace of epigenetic aging is relatively consistent within individuals. ELA effects on loci are adversity-dependent, but a given ELA has a coordinated impact across tissues. Finally, ELA targeted many of the same loci as age, but the direction of these effects varied, indicating that ELA does not uniformly contribute to accelerated age in the epigenome. ELA thus imprints a coordinated, tissue-spanning epigenetic signature that is both distinct from and intertwined with age-related change, advancing our understanding of how early environments sculpt the molecular foundations of aging and disease.more » « less
-
Sex differences in life span are widespread across animal taxa, but their causes remain unresolved. Alterations to the epigenome are hypothesized to contribute to vertebrate aging, and DNA methylation–based aging clocks allow for quantitative estimation of biological aging trajectories. Here, we investigate the influence of age, sex, and their interaction on genome-wide DNA methylation patterns in the brown anole (Anolis sagrei), a lizard with pronounced female-biased survival and longevity. We develop a series of age predictor models and find that, contrary to our predictions, rates of epigenetic aging were not slower in female lizards. However, methylation states at loci acquiring age-associated changes appear to be more “youthful” in young females, suggesting that female DNA methylomes are preemptively fortified in early life in opposition to the direction of age-related drift. Collectively, our findings provide insights into epigenetic aging in reptiles and suggest that early-life epigenetic profiles may be more informative than rates of change for predicting sex biases in longevity.more » « less
An official website of the United States government

