skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience
Award ID(s):
1652448
PAR ID:
10481168
Author(s) / Creator(s):
; ;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Reliability Engineering & System Safety
Volume:
229
Issue:
C
ISSN:
0951-8320
Page Range / eLocation ID:
108896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy. 
    more » « less
  2. null (Ed.)
    Solar arrays often experience faults that go undetected for long periods of time, resulting in generation and revenue losses. In this paper, we present SunDown, a sensorless approach for detecting per-panel faults in solar arrays. SunDown's model-driven approach leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior, can handle concurrent faults in multiple panels, and performs anomaly classification to determine probable causes. Using two years of solar data from a real home and a manually generated dataset of solar faults, we show that our approach is able to detect and classify faults, including from snow, leaves and debris, and electrical failures with 99.13% accuracy, and can detect concurrent faults with 97.2% accuracy. 
    more » « less