skip to main content


This content will become publicly available on November 9, 2024

Title: Unveiling the white dwarf in J191213.72 − 441045.1 through ultraviolet observations
ABSTRACT

J191213.72 − 441045.1 is a binary system composed of a white dwarf and an M-dwarf in a 4.03-h orbit. It shows emission in radio, optical, and X-ray, all modulated at the white dwarf spin period of 5.3 min, as well as various orbital sideband frequencies. Like in the prototype of the class of radio-pulsing white dwarfs, AR Scorpii, the observed pulsed emission seems to be driven by the binary interaction. In this work, we present an analysis of far-ultraviolet spectra obtained with the Cosmic Origins Spectrograph at the Hubble Space Telescope, in which we directly detect the white dwarf in J191213.72 − 441045.1. We find that the white dwarf has a temperature of Teff = 11485 ± 90 K and mass of 0.59 ± 0.05 M⊙. We place a tentative upper limit on the magnetic field of ≈50 MG. If the white dwarf is in thermal equilibrium, its physical parameters would imply that crystallization has not started in the core of the white dwarf. Alternatively, the effective temperature could have been affected by compressional heating, indicating a past phase of accretion. The relatively low upper limit to the magnetic field and potential lack of crystallization that could generate a strong field pose challenges to pulsar-like models for the system and give preference to propeller models with a low magnetic field. We also develop a geometric model of the binary interaction which explains many salient features of the system.

 
more » « less
Award ID(s):
1908590
NSF-PAR ID:
10481212
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Monthly Notices of the Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
3826 to 3836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Cataclysmic variables (CVs) that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. While population synthesis models predict that around 40–70 per cent of the Galactic CVs are post-period minimum systems referred to as ‘period bouncers’, only a few dozen confirmed systems are known. We report the study and characterization of a new eclipsing CV, SRGeJ041130.3+685350 (SRGeJ0411), discovered from a joint SRG/eROSITA and ZTF programme. The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs. We obtained optical high-speed photometry to confirm the eclipse of SRGeJ0411 and determine the orbital period to be Porb ≈ 97.530 min. The spectral energy distribution suggests that the donor has an effective temperature of ≲ 1800 K. We constrain the donor mass with the period–density relationship for Roche lobe-filling stars and find that Mdonor ≲ 0.04 M⊙. The binary parameters are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer. The optical emission lines of SRGeJ0411 are single-peaked despite the system being eclipsing, which is typically only seen due to stream-fed accretion in polars. X-ray spectroscopy hints that the white dwarf in SRGeJ0411 could be magnetic, but verifying the magnetic nature of SRGeJ0411 requires further investigation. The lack of optical outbursts has made SRGeJ0411 elusive in previous surveys, and joint X-ray and optical surveys highlight the potential for discovering similar systems in the near future.

     
    more » « less
  2. Abstract

    We studied the central region of bipolar nebula M 2-9 using radio-continuum observations obtained from the Jansky Very Large Array (JVLA) and the Atacama Large Millimeter Array (ALMA) interferometers. This work presents new images at ∼43 GHz (∼7.0 mm) and ∼345 GHz (∼0.9 mm) with angular resolutions of $\sim {0{^{\prime \prime}_{.}}047}$ and ${0{^{\prime \prime}_{.}}09}$, respectively. The continuum emission at ∼43 GHz shows an elongated jet-like structure perpendicular to the ∼345 GHz observation. We conclude that both emissions could correspond to tracing an isothermal collimated fast wind with constant expansion velocity and being driven by the circumstellar ring traced by ALMA. Although this configuration has been discussed within the scope of planetary nebulae models, there is a remarkable fact: the collimated fast wind shows morphological spatial variability. This supports the idea of a symbiotic binary system within the innermost part of M 2-9, which would be composed of a white dwarf and an AGB star. The latter could explain the mirror symmetry observed at larger scales due to their orbital motion.

     
    more » « less
  3. ABSTRACT

    We present our findings on the spectral analysis of seven magnetic white dwarfs that were presumed to be double degenerates. We obtained time-resolved spectroscopy at the Gemini Observatory to look for evidence of binarity or fast rotation. We find three of our targets have rotation periods of less than an hour based on the shifting positions of the Zeeman-split H α components: 13, 35, and 39 min, and we find one more target with a approximately an hour long period that is currently unconstrained. We use offset dipole models to determine the inclination, magnetic field strength, and dipole offset of each target. The average surface field strengths of our fast rotators vary by 1–2 MG between different spectra. In all cases, the observed absorption features are too shallow compared to our models. This could be due to extra flux from a companion for our three low-mass targets, but the majority of our sample likely requires an inhomogeneous surface composition. Including an additional magnetic white dwarf with similar properties presented in the literature, we find that five of the eight targets in this sample show field variations on minute/hour time-scales. A crystallization driven dynamo can potentially explain the magnetic fields in three of our targets with masses above 0.7 M⊙, but another mechanism is still needed to explain their rapid rotation. We suggest that rapid rotation or low-masses point to binary evolution as the likely source of magnetism in seven of these eight targets.

     
    more » « less
  4. ABSTRACT

    We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26−35 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense wind from an evolved companion in the binary system. The radio emission is detected early on (day 6) and increases rapidly to a peak on day 15. The radio luminosity increases due to a decrease in the opacity of the circumstellar material in front of the shocked material and fades as the density of the surrounding medium decreases and the velocity of the shock decelerates. Modelling the light curve provides an estimated mass-loss rate of ${\overset{\hbox{$\bullet $}}{M}}_{\textrm {wind}} \approx 10^{-8}\, {\textrm {M}}_\odot ~{\textrm {yr}}^{-1}$ from the red giant star and ejecta mass in the range of Mej = 10−5––10−6 M⊙ from the surface of the white dwarf. V3890 Sgr likely hosts a massive white dwarf similar to other symbiotic recurrent novae, thus considered a candidate for supernovae type Ia (SNe Ia) progenitor. However, its radio flux densities compared to upper limits for SNe Ia have ruled it out as a progenitor for SN 2011fe like supernovae.

     
    more » « less
  5. ABSTRACT

    CSS1603+19 is a cataclysmic variable (CV) with an orbital period of 81.96 min, near the minimal period of CVs. It is unusual in having a strong mid-infrared excess inconsistent with thermal emission from a brown dwarf companion. Here, we present time-resolved multiwavelength observations of this system. WISE photometry indicates that the mid-infrared excess displays a one-magnitude eclipsing-like variability during the orbit. We obtained near-infrared and optical spectroscopy using Gemini, MDM, and APO telescopes. Near-infrared spectra show possible cyclotron features indicating that the white dwarf has a magnetic field of about 5 MG. Optical and near-infrared spectra display double-peaked emission lines, with both components showing strong radial velocity variations during the orbital period and with the broad component leading the narrow component stably by about 0.2 of the orbital phase. We construct a physical model informed by existing observations of the system and determine that one component likely originates from the accretion column on to the magnetized white dwarf in synchronous rotation with the orbital motion and the other from the Roche overflow point. This allows us to constrain the masses of the binary components to be M1 > 0.24 M⊙ for the white dwarf accretor and M2 = 0.0644 ± 0.0074 M⊙ for the donor. We classify the system as an AM Herculis star, or a polar. It has likely completed its stint on the period gap, but has not yet gone through the period bounce.

     
    more » « less