skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electric field decay without pair production: lattice, bosonization and novel worldline instantons
A<sc>bstract</sc> Electric fields can spontaneously decay via the Schwinger effect, the nucleation of a charged particle-anti particle pair separated by a critical distanced. What happens if the available distance is smaller thand? Previous work on this question has produced contradictory results. Here, we study the quantum evolution of electric fields when the field points in a compact direction with circumferenceL < dusing the massive Schwinger model, quantum electrodynamics in one space dimension with massive charged fermions. We uncover a new and previously unknown set of instantons that result in novel physics that disagrees with all previous estimates. In parameter regimes where the field value can be well-defined in the quantum theory, generic initial fieldsEare in factstable and do not decay, while initial values that are quantized in half-integer units of the chargeE= (k/2)gwithk∈ ℤoscillate in timefrom +(k/2)gto−(k/2)g, with exponentially small probability of ever taking any other value. We verify our results with four distinct techniques: numerically by measuring the decay directly in Lorentzian time on the lattice, numerically using the spectrum of the Hamiltonian, numerically and semi-analytically using the bosonized description of the Schwinger model, and analytically via our instanton estimate.  more » « less
Award ID(s):
2112839
PAR ID:
10481226
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> The phenomenon of gravitational particle production can take place for quantum fields in curved spacetime. The abundance and energy spectrum of gravitationally produced particles is typically calculated by solving the field’s mode equations on a time-dependent background metric. For purposes of studying dark matter production in an inflationary cosmology, these mode equations are often solved numerically, which is computationally intensive, especially for the rapidly-oscillating high-momentum modes. However, these same modes are amenable to analytic evaluation via the Exact Wentzel-Kramers-Brillouin (EWKB) method, where gravitational particle production is a manifestation of the Stokes phenomenon. These analytic techniques have been used in the past to study gravitational particle production for spin-0 bosons. We extend the earlier work to study gravitational production of spin-1/2 and spin-3/2 fermions. We derive an analytic expression for the connection matrix (valid to all orders in an adiabatic parameterħ) that relates Bogoliubov coefficients across a Stokes line connecting a merged pair of simple turning points. By comparing the analytic approximation with a direct numerical integration of the mode equations, we demonstrate an excellent agreement and highlight the utility of the Stokes phenomenon formalism applied to fermions. We discuss the implications for an analytic understanding of catastrophic particle production due to vanishing sound speed, which can occur for a spin-3/2 Rarita-Schwinger field. 
    more » « less
  2. A<sc>bstract</sc> We present the analysis of two-particle angular correlations using coordinate systems defined with the conventional beam axis and the event thrust axis. We propose the latter as a good representation for the correlation structure interpretation in thee+ecollision system. Thee+ecollisions to hadronic final states at center-of-mass energies of$$ \sqrt{s} $$ s = 10.52 GeV and 10.58 GeV are recorded by the Belle detector at KEKB. In this paper, results on the first dataset are supplementary to the previous Belle publication [1]. At the same time, the latter is the first two-particle correlation measurement at collision energy on theΥ(4S) resonance and is sensitive to its decay products. Measurements are reported as a function of the charged-particle multiplicity. Finally, a qualitative understanding of the correlation structure is discussed using a combination of Monte Carlo simulations and experimental data. 
    more » « less
  3. A<sc>bstract</sc> This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb−1of proton–proton collisions at$$ \sqrt{s} $$ s = 13 TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, dE/dx. Trajectories reconstructed solely by the inner tracking system and a dE/dxmeasurement in the pixel detector layers provide sensitivity to particles with lifetimes down to$$ \mathcal{O} $$ O (1) ns with a mass, measured using the Bethe–Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production ofR-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime. 
    more » « less
  4. A<sc>bstract</sc> We study flavor changing neutral current decays ofBandKmesons in the dark U(1)Dmodel, with the dark photon/darkZmass between 10 MeV and 2 GeV. Although the model provides an improved fit (compared to the standard model) to the differential decay distributions ofB → K(∗)+, withℓ=μ,e, andBs→ ϕμ+μ, the allowed parameter space is ruled out by measurements of atomic parity violation,K+→ μ++invisibledecay, and$$ {B}_s-{\overline{B}}_s $$ B s B ¯ s mixing, among others. To evade constraints from low energy data, we extend the model to allow for (1) additional invisibleZDdecay, (2) a direct vector coupling ofZDto muons, and (3) a direct coupling ofZDto both muons and electrons, with the electron coupling fine-tuned to cancel theZDcoupling to electrons via mixing. We find that only the latter case survives all constraints. 
    more » « less
  5. A<sc>bstract</sc> A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at$$ \sqrt{s} $$ s = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb−1, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to twoτ′ leptons with an electric charge equal to 2eis presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles. 
    more » « less