skip to main content


Title: The Quest for URM Doctoral Persistence: An Analysis of Feedback Loops in the Academic System
Studies have shown that the graduation rate for underrepresented minorities (URM) students enrolled in engineering doctorates is significantly lower than their peers. In response, we created the “Rising Doctoral Institute (RDI)”. This project aims to address issues that URM students encounter when transitioning into a Ph.D. in engineering and their decision to persist in the program. To suggest institutional policies that increase the likelihood of URM students to persist in their doctorate, we identify and analyze some factors in the academic system that reinforce or hinder the retention of URM students in doctoral education. Although the factors that influence persistence in URM students have been largely studied as direct causes of attrition or retention, there is a need for a system perspective that takes into account the complexity and dynamic interaction that exists between those factors. The academic system is a complex system that, by nature, is policy resistant. This means that a positive variation of a factor can incur unintended consequences that could lead to a negative variation in other factors and ultimately hinder the positive outcomes of that policy. In this work-in-progress article, we analyze the dynamics of the factors in the academic system that reinforce or hinder the retention of URM graduate students in engineering. The purpose is to build some of the causal loops that involve those factors, to improve the understanding of how the complex system works, and prevent unintended consequences of institutional policies. We used Causal Loop Diagrams (CLD) to model the feedback loops of the system based on initial hypotheses of causal relationships between the factors. We followed a process that started with establishing hypotheses from a previous literature review, then using a different set of articles we identified the factors related to the hypotheses and the causal links between them. Next, we did axial coding to group the concepts into smaller categories and established the causal relations between categories. With these categories and relations, we created the CLDs for each hypothesis. For the CLDs that have connections missing to close the loop, we went to find additional literature to close them. Finally, we analyzed the implications of each CLD. In this article, we analyze and describe three major CLDs found in literature. The first one was built around the factor of having a positive relationship with the supervisor. The second centered on the student’s experience. The third focused on factors that relate to university initiatives  more » « less
Award ID(s):
2029784
NSF-PAR ID:
10481272
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings - ASEE Annual Conferences and Exposition. Baltimore, Maryland.
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several studies have shown that underrepresented minorities (URM) (African Americans, Native Americans, Pacific Islanders, and Latinos) are more likely to drop out of engineering doctorate programs before graduation compared to international and majority students. In addition, transitioning into the doctoral programs without having a good understanding of what it entails can make the PhD experience difficult. To address this issue, a team of researchers from four US universities developed a project called “the Rising Doctoral Institute (RDI)’’. One of the research goals of this project is to better understand how factors in the academic system interact dynamically to influence (i.e., support or hinder) incoming URM students’ access, success, persistence, and retention in engineering doctoral programs. To accomplish this goal, we will use a comprehensive analysis approach known as System Dynamic Model (SDM). This work-In-Progress article represents the starting point to develop this model and its overall goal is to conduct a systematic literature review to identify the factors in the academic system that impact URM students’ experience in doctoral engineering programs. We followed a process suggested by Okoli and Schabram [1] which consists of four major steps. The first step is presenting the purpose of the literature review, protocol, and training. The second step consists of selecting the literature and practical screen. The next step is the quality appraisal and data extraction. Finally, the analysis of findings and writing the review. By identifying the factors and the relation between them, we could help ensure a more diverse and equitable STEM education. Although some external factors can affect students’ access, success, persistence and retention in engineering PhD programs, this study is limited to exploring the factors and interactions within the academic system that can potentially impact the successful experience of underrepresented minorities in PhD programs in engineering such as Advisor-Advisee Relationship, Student’s Experience, Academic Support and Faculty-Students Interaction 
    more » « less
  2. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. We seek to identify the factors that promote persistence and graduation as well as attrition for Black students in Electrical Engineering (EE), Computer Engineering (CpE), and Mechanical Engineering (ME). Our work combines quantitative exploration and qualitative interviews to better understand the nuanced and complex nature of retention and attrition in these fields. We are investigating the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In this paper, we report on the results from 79 in-depth interviews with students at Predominantly White Institutions (PWIs) and a Historically Black University (HBCU [or HBU]). We describe emergent findings during Year 3 of our project, with a focus on four papers-in-progress: • Paper # 1: Our project utilized several innovative strategies for collecting narratives from our 79 interviewees. In particular, we developed a card-sorting activity to learn more about students’ reasons for choosing their engineering major. We have explored a variety of ways to analyze the data that illustrate the value of this type of data collection strategy and which will be of value to other researchers interested in decision making where there is a potentially complex set of factors, such as those found in deciding on a major. • Paper # 2: We summarized student responses to a pre-interview climate survey about three domains – Teaching and Learning, Faculty and Peer Interactions, and Belonging and Commitment. We investigated two questions: Are there differences between persisters and switchers? And, are there differences by study major? Results indicate substantial differences between persisters and switchers and some differences between ME and ECE students. • Paper # 3: Preliminary analysis of interviews of 10 HBCU Black students and 10 PWI Black students revealed that students enact several different types of community cultural wealth, particularly family, navigational, aspirational, social and resistant capital. Early results suggest that the HBCU students enacted a different form of family capital that resided in their “HBCU family” and the opportunities that their college-based networks afforded them to succeed in the major. PWI students described various forms of navigational capital and assets that were enacted in order to succeed at their study institutions. Our paper concludes with implications for university policies and practices aimed toward underrepresented students. 
    more » « less
  3. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  4. Our transformative mixed-methods project, funded by the Division of Engineering Education and Centers, responds to calls for more cross-institutional qualitative and longitudinal studies of minorities in engineering education. Our project builds on prior work that demonstrated the impacts of gender and race on academic trajectories in Electrical, Computer, and Mechanical Engineering (EE, CpE, and ME, respectively) to answer the following questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what ways do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? In Year 4 of our project, the research team has engaged in deeper analysis of our quantitative data from the Multi-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) database and our qualitative data from 79 in-depth interviews of students in the three study majors at our four study institutions. Expanding on findings presented in prior years, in this paper, we describe emergent results from three papers from Year 4 of our project: • Paper # 1: “Who Tells Your Story? Qualitative Methods for Establishing Connections and Eliciting Narratives” was published in the International Journal of Qualitative Methodology in 2021. It includes a description of the development of the card-sorting activity that students completed to describe their reasons for choosing to major in engineering and an exploration of different ways to analyze the data. Analysis of how frequently the factors influencing the major choice were chosen by interviewees has allowed us to identify those factors that carry the greatest importance for students and how they vary for persisters and switchers. • Paper # 2: “GPA Trends of Black Mechanical Engineering Students”: Our early qualitative work has led to questions about students who switch majors and those who leave the university. We are using the MIDFIELD database to better understand characteristics of students who switch majors and who leave the university. We will use functional cluster analysis to group the GPA trends to find clearly defined groups of students' GPA. Preliminary findings suggest that the students who switch majors have different GPA trends than the students who leave their institutions. This holds true for whether the student chooses to switch their major and stay within engineering and students who choose to leave engineering. • Paper # 3: “Pride and Prestige: Factors Influencing How and Why Black Students Choose to Attend a Predominantly White Institution or a Historically Black University”: In this paper, we explore the reasons that students in our study majors decided to attend either a HBCU or a PWI. Our early analysis revealed that students had diverse reasons for college choice, including affordability, location, familiarity with the institution, family encouragement and connections, and prestige of the university. Our paper will also describe the differences between students who attended a HBCU or PWI in their rationale for deciding to attend a particular university. 
    more » « less
  5. null (Ed.)
    The value of internship experiences for engineering students is widely discussed in the literature. With this analysis, we seek to contribute knowledge addressing 1) the prevalence of internship experiences amongst engineering students drawn from a large, multi-institutional, nationally-representative sample, 2) if the likelihood of having an engineering internship experiences is equitable amongst various student identities, and 3) what additional factors influence the likelihood of a student having an internship experience, such as field of study and institution type. Data were drawn from a 2015 multi-institutional nationally representative survey of engineering juniors and seniors, excluding one institution with a mandatory co-op program (n = 5530 from 26 institutions). A z-test was used to analyze differences in internship participation rates related to academic cohort (e.g., junior, senior), gender, underrepresented minority (URM) status, first-generation, and low-income status, as well as a subset of identities at the intersection of these groups (gender + URM; first-generation + low-income). A logistic regression model further examined factors such as GPA, engineering task self-efficacy, field of engineering, and institution type. We found that amongst the students in our dataset, 64.7% of the seniors had “worked in a professional engineering environment as an intern/co-op” (41.1% of juniors, 64.7% of 5th years). Significantly less likely (p<0.05) to have internship experiences were men compared to women (52.9% vs 58.3%), URM students compared to their majority counterparts (41.5% vs 56.8%), first-generation students compared to continuing (47.6% vs 57.2%), and low-income students compared to higher-income peers (46.2% vs 57.4%). Examined intersectional identities significantly less likely to have an internship were URM men (37.5%) and first-generation low-income students (42.0%), while non-URM women (60.5%) and continuing high-income students (58.2%) were most likely to report having an internship. Results from the logistic regression model indicate that significant factors are cohort (junior vs senior), GPA, engineering task self-efficacy, and engineering field. When controlling for the other variables in the model, gender, URM, first-generation, and low-income status remain significant; however, the interaction effect between these identities is not significant in the full model. Institution type did not have much impact. Having a research experience was not a significant factor in predicting the likelihood of having an internship experience, although studying abroad significantly increased the odds. Amongst engineering fields, industrial and civil engineering students were the most likely to have an internship, while aerospace and materials engineering students were the least likely. Full results and discussion will be presented in the paper. This analysis provides valuable information for a variety of stakeholders. For engineering programs, it is useful to benchmark historic students’ rates of internship participation against a multi-institutional, nationally representative dataset. For academic advisors and career services professionals, it is useful to understand in which fields an internship is common to be competitive on the job market, and which fields have fewer opportunities or prioritize research experiences. Ultimately, for those in higher education and workforce development it is vital to understand which identities, and intersectional identities, are accessing internship experiences as a pathway into the engineering workforce. 
    more » « less