skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zero-Added-Loss Entangled-Photon Multiplexing for Ground- and Space-Based Quantum Networks
We propose a scheme for optical entanglement distribution in quantum networks based on a quasideterministic entangled photon-pair source. By combining heralded photonic Bell-pair generation with spectral mode conversion to interface with quantum memories, the scheme eliminates switching losses due to multiplexing in the source. We analyze this “zero-added-loss multiplexing” (ZALM) Bell-pair source for the particularly challenging problem of long-baseline entanglement distribution via satellites and ground-based memories, where it unlocks additional advantages: (i) the substantially higher channel efficiency η of downlinks versus uplinks with realistic adaptive optics, and (ii) photon loss occurring before interaction with the quantum memory—i.e., Alice and Bob receiving rather than transmitting—improve entanglement generation rate scaling by O(√η). Based on numerical analyses, we estimate our protocol to achieve >10ebit/s at memory multiplexing of 102 spin qubits for ground distance >102km, with the spin-spin Bell-state fidelity exceeding 99%. Our architecture presents a blueprint for realizing global-scale quantum networks in the near term.  more » « less
Award ID(s):
1839155
PAR ID:
10481382
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Physical Review Applied
Date Published:
Journal Name:
Physical Review Applied
Volume:
19
Issue:
5
ISSN:
2331-7019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One fundamental goal of quantum networks is to provide node-to-node entanglement distribution. In this work, we develop a simulator, called A 2 Tango, for entanglement generation between two remote atom-ensemble nodes in a quantum network following Briegel, Dur, Cirac and Zoller (BDCZ) protocol. We encode quantum information to the two spatial modes of local atomic-ensemble spin waves and polarization states of single photons. The basic operations include atom-photon entanglement generation, quantum memory write-read operations, two-photon Bell-state measurement, and quantum state tomography. We model multi-photon events during the local excitation and propagation to account for their induced error in entanglement generation and distribution. We investigate the entanglement generation rate and fidelity as functions of the parameters which are realizable in experiments. Our work improves the open-sourced SeQUeNCe simulator and inspires the development of future quantum networks. 
    more » « less
  2. Noise and photon loss encountered on quantum channels pose a major challenge for reliable entanglement generation in quantum networks. In near-term networks, heralding is required to inform endpoints of successfully generated entanglement. If after heralding, entanglement fidelity is too low, entanglement purification may be utilized to probabilistically increase fidelity. Traditionally, purification protocols proceed as follows: generate heralded EPR pairs, execute a series of quantum operations on two or more pairs between two nodes, and classically communicate results to check for success. Purification may require several rounds while qubits are stored in memories, vulnerable to decoherence. In this work, we explore notions of optimistic purification, wherein classical communication required for heralding and purification is delayed, possibly to the end of the process. Optimism reduces the overall time EPR pairs are stored in memory, increasing fidelity while possibly decreasing EPR pair rate due to decreased heralding and purification failure. We apply optimism to the entanglement pumping scheme, ground- and satellite-based EPR generation sources, and current state-of-the-art purification circuits that include several measurement and purification checkpoints. We evaluate performance in view of a number of parameters, including link length, EPR source rate and fidelity; and memory coherence time. We show that while our optimistic protocol increases fidelity, the traditional approach may even decrease fidelity for longer distances. We study the trade-off between rate and fidelity under entanglement-based QKD, and find that optimistic schemes can yield higher rates compared to non-optimistic counterparts, with most advantages seen in scenarios with low initial fidelity and short coherence times. 
    more » « less
  3. Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances. 
    more » « less
  4. Abstract The past decade has seen tremendous progress in experimentally realizing the building blocks of quantum repeaters. Repeater architectures with multiplexed quantum memories have been proposed to increase entanglement distribution rates, but an open challenge is to maintain entanglement fidelity over long-distance links. Here, we address this with a quantum router architecture comprising many quantum memories connected in a photonic switchboard to broker entanglement flows across quantum networks. We compute the rate and fidelity of entanglement distribution under this architecture using an event-based simulator, finding that the router improves the entanglement fidelity as multiplexing depth increases without a significant drop in the entanglement distribution rate. Specifically, the router permits channel-loss-invariant fidelity, i.e. the same fidelity achievable with lossless links. Furthermore, this scheme automatically prioritizes entanglement flows across the full network without requiring global network information. The proposed architecture uses present-day photonic technology, opening a path to near-term deployable multi-node quantum networks. 
    more » « less
  5. Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement of quantum repeaters and memories. In this article, we present a comprehensive framework for network planning, aiming to efficiently distribute quantum repeaters across existing infrastructure, with the objective of maximizing quantum network utility within an entanglement distribution network. We apply our framework to several cases including a preliminary illustration of a dumbbell network topology and real-world cases of the SURFnet and ESnet. We explore the effect of quantum memory multiplexing within quantum repeaters, as well as the influence of memory coherence time on quantum network utility. We further examine the effects of different fairness assumptions on network planning, uncovering their impacts on real-time network performance. 
    more » « less