skip to main content


Title: Informative community structure revealed using Arabidopsis time series transcriptome data via partitioned local depth
Abstract

Transcriptome studies that provide temporal information about transcript abundance facilitate identification of gene regulatory networks (GRNs). Inferring GRNs from time series data using computational modeling remains a central challenge in systems biology. Commonly employed clustering algorithms identify modules of like-responding genes but do not provide information on how these modules are interconnected. These methods also require users to specify parameters such as cluster number and size, adding complexity to the analysis. To address these challenges, we used a recently developed algorithm, partitioned local depth (PaLD), to generate cohesive networks for 4 time series transcriptome datasets (3 hormone and 1 abiotic stress dataset) from the model plant Arabidopsis thaliana. PaLD provided a cohesive network representation of the data, revealing networks with distinct structures and varying numbers of connections between transcripts. We utilized the networks to make predictions about GRNs by examining local neighborhoods of transcripts with highly similar temporal responses. We also partitioned the networks into groups of like-responding transcripts and identified enriched functional and regulatory features in them. Comparison of groups to clusters generated by commonly used approaches indicated that these methods identified modules of transcripts that have similar temporal and biological features, but also identified unique groups, suggesting that a PaLD-based approach (supplemented with a community detection algorithm) can complement existing methods. These results revealed that PaLD could sort like-responding transcripts into biologically meaningful neighborhoods and groups while requiring minimal user input and producing cohesive network structure, offering an additional tool to the systems biology community to predict GRNs.

 
more » « less
NSF-PAR ID:
10481412
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
in silico Plants
Volume:
6
Issue:
1
ISSN:
2517-5025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Cell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15 to 80% of the genome despite performing distinct functions. In each case, these large periodic transcriptional programs are controlled by gene regulatory networks (GRNs), and it has been shown through genetics and chromosome mapping approaches in model systems that at the core of these GRNs are small sets of genes that drive the transcript dynamics of the GRNs. However, it is unlikely that we have identified all of these core genes, even in model organisms. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming, or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available. Results This study shows that a unified set of quantified dynamic features of high-throughput time series gene expression data are more prominent in the core transcriptional regulators of cell and circadian cycles than in their outputs, in multiple organism, even in the presence of external periodic stimuli. Additionally, we observe that the power to discriminate between core and non-core genes is largely insensitive to the particular choice of quantification of these features. Conclusions There are practical applications of the approach presented in this study for network inference, since the result is a ranking of genes that is enriched for core regulatory elements driving a periodic phenotype. In this way, the method provides a prioritization of follow-up genetic experiments. Furthermore, these findings reveal something unexpected—that there are shared dynamic features of the transcript abundance of core components of unrelated GRNs that control disparate periodic phenotypes. 
    more » « less
  2. ABSTRACT Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum . We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. 
    more » « less
  3. Summary

    Predicting gene regulatory networks (GRNs) from expression profiles is a common approach for identifying important biological regulators. Despite the increased use of inference methods, existing computational approaches often do not integrate RNA‐sequencing data analysis, are not automated or are restricted to users with bioinformatics backgrounds. To address these limitations, we developedtuxnet, a user‐friendly platform that can process raw RNA‐sequencing data from any organism with an existing reference genome using a modifiedtuxedopipeline (hisat 2 + cufflinkspackage) and infer GRNs from these processed data.tuxnetis implemented as a graphical user interface and can mine gene regulations, either by applying a dynamic Bayesian network (DBN) inference algorithm,genist, or a regression tree‐based pipeline,rtp‐star. We obtained time‐course expression data of aPERIANTHIA(PAN) inducible line and inferred a GRN usinggenistto illustrate the use oftuxnetwhile gaining insight into the regulations downstream of the Arabidopsis root stem cell regulatorPAN. Usingrtp‐star, we inferred the network ofATHB13, a downstream gene of PAN, for which we obtained wild‐type and mutant expression profiles. Additionally, we generated two networks using temporal data from developmental leaf data and spatial data from root cell‐type data to highlight the use oftuxnetto form new testable hypotheses from previously explored data. Our case studies feature the versatility oftuxnetwhen using different types of gene expression data to infer networks and its accessibility as a pipeline for non‐bioinformaticians to analyze transcriptome data, predict causal regulations, assess network topology and identify key regulators.

     
    more » « less
  4. Abstract Legume plants such as soybean produce two major types of root lateral organs, lateral roots and root nodules. A robust computational framework was developed to predict potential gene regulatory networks (GRNs) associated with root lateral organ development in soybean. A genome-scale expression data set was obtained from soybean root nodules and lateral roots and subjected to biclustering using QUBIC (QUalitative BIClustering algorithm). Biclusters and transcription factor (TF) genes with enriched expression in lateral root tissues were converged using different network inference algorithms to predict high-confidence regulatory modules that were repeatedly retrieved in different methods. The ranked combination of results from all different network inference algorithms into one ensemble solution identified 21 GRN modules of 182 co-regulated genes networks, potentially involved in root lateral organ development stages in soybean. The workflow correctly predicted previously known nodule- and lateral root-associated TFs including the expected hierarchical relationships. The results revealed distinct high-confidence GRN modules associated with early nodule development involving AP2, GRF5 and C3H family TFs, and those associated with nodule maturation involving GRAS, LBD41 and ARR18 family TFs. Knowledge from this work supported by experimental validation in the future is expected to help determine key gene targets for biotechnological strategies to optimize nodule formation and enhance nitrogen fixation. 
    more » « less
  5. Abstract Background

    A cell exhibits a variety of responses to internal and external cues. These responses are possible, in part, due to the presence of an elaborate gene regulatory network (GRN) in every single cell. In the past 20 years, many groups worked on reconstructing the topological structure of GRNs from large-scale gene expression data using a variety of inference algorithms. Insights gained about participating players in GRNs may ultimately lead to therapeutic benefits. Mutual information (MI) is a widely used metric within this inference/reconstruction pipeline as it can detect any correlation (linear and non-linear) between any number of variables (n-dimensions). However, the use of MI with continuous data (for example, normalized fluorescence intensity measurement of gene expression levels) is sensitive to data size, correlation strength and underlying distributions, and often requires laborious and, at times, ad hoc optimization.

    Results

    In this work, we first show that estimating MI of a bi- and tri-variate Gaussian distribution usingk-nearest neighbor (kNN) MI estimation results in significant error reduction as compared to commonly used methods based on fixed binning. Second, we demonstrate that implementing the MI-based kNN Kraskov–Stoögbauer–Grassberger (KSG) algorithm leads to a significant improvement in GRN reconstruction for popular inference algorithms, such as Context Likelihood of Relatedness (CLR). Finally, through extensive in-silico benchmarking we show that a new inference algorithm CMIA (Conditional Mutual Information Augmentation), inspired by CLR, in combination with the KSG-MI estimator, outperforms commonly used methods.

    Conclusions

    Using three canonical datasets containing 15 synthetic networks, the newly developed method for GRN reconstruction—which combines CMIA, and the KSG-MI estimator—achieves an improvement of 20–35% in precision-recall measures over the current gold standard in the field. This new method will enable researchers to discover new gene interactions or better choose gene candidates for experimental validations.

     
    more » « less