skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conservation of dynamic characteristics of transcriptional regulatory elements in periodic biological processes
Abstract Background Cell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15 to 80% of the genome despite performing distinct functions. In each case, these large periodic transcriptional programs are controlled by gene regulatory networks (GRNs), and it has been shown through genetics and chromosome mapping approaches in model systems that at the core of these GRNs are small sets of genes that drive the transcript dynamics of the GRNs. However, it is unlikely that we have identified all of these core genes, even in model organisms. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming, or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available. Results This study shows that a unified set of quantified dynamic features of high-throughput time series gene expression data are more prominent in the core transcriptional regulators of cell and circadian cycles than in their outputs, in multiple organism, even in the presence of external periodic stimuli. Additionally, we observe that the power to discriminate between core and non-core genes is largely insensitive to the particular choice of quantification of these features. Conclusions There are practical applications of the approach presented in this study for network inference, since the result is a ranking of genes that is enriched for core regulatory elements driving a periodic phenotype. In this way, the method provides a prioritization of follow-up genetic experiments. Furthermore, these findings reveal something unexpected—that there are shared dynamic features of the transcript abundance of core components of unrelated GRNs that control disparate periodic phenotypes.  more » « less
Award ID(s):
1839288
PAR ID:
10378553
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BMC Bioinformatics
Volume:
23
Issue:
1
ISSN:
1471-2105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Csikász-Nagy, Attila (Ed.)
    Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, I terative N etwork H ypoth e sis Re ductio n from T emporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data. 
    more » « less
  2. null (Ed.)
    All aspects of transcription and its regulation involve dynamic events. However, capturing these dynamic events in gene regulatory networks (GRNs) offers both a promise and a challenge. The promise is that capturing and modeling the dynamic changes in GRNs will allow us to understand how organisms adapt to a changing environment. The ability to mount a rapid transcriptional response to environmental changes is especially important in nonmotile organisms such as plants. The challenge is to capture these dynamic, genome-wide events and model them in GRNs. In this review, we cover recent progress in capturing dynamic interactions of transcription factors with their targets—at both the local and genome-wide levels—and using them to learn how GRNs operate as a function of time. We also discuss recent advances that employ time-based machine learning approaches to forecast gene expression at future time points, a key goal of systems biology. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs. By integrating sequence-based design and in vivo screening, we engineer activatable promoters that achieve up to 1,000-fold dynamic range in anEscherichia coli-based cell-free system. These components enable CRISPRa GRNs that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein–protein interactions. We apply these tools to build input-responsive CRISPRa/i GRNs, including feedback loops, logic gates, multilayer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables classes of gene regulatory functions in cell-free systems. 
    more » « less
  4. Regulation of gene expression is a fundamental biological process that relies on transcription factors (TF) recognizing specific cis motifs in the regulatory regions of the genes that they control. In most eukaryotic organisms, cis-regulatory elements are significantly enriched around the transcription start site (TSS). However, different from other genic features, TSSs need to be experimentally determined, becoming then important components of genome annotations. One of the methods for experimentally determining TSSs at the genome-wide level is CAGE (cap analysis of gene expression). This chapter describes how to prepare a CAGE library for sequencing, starting with RNA extraction, library construction, and quality controls before proceed to sequencing in the Illumina platform. We then describe how to use a computational pipeline to determine, from the alignment of CAGE tags, the genome-wide location of TSSs, followed with statistical approaches required to cluster TSSs that operate as transcriptional units, and to determine core promoter properties such as shape. The analyses described here focus on maize, since its large and yet deficiently annotated genome creates some unique challenges, but with some modifications can be easily adopted for other organisms as well. 
    more » « less
  5. Marshall-Colon, Amy (Ed.)
    Abstract Gene regulatory networks (GRNs) are defined by a cascade of transcriptional events by which signals, such as hormones or environmental cues, change development. To understand these networks, it is necessary to link specific transcription factors (TFs) to the downstream gene targets whose expression they regulate. Although multiple methods provide information on the targets of a single TF, moving from groups of co-expressed genes to the TF that controls them is more difficult. To facilitate this bottom-up approach, we have developed a web application named TF DEACoN. This application uses a publicly available Arabidopsis thaliana DNA Affinity Purification (DAP-Seq) data set to search for TFs that show enriched binding to groups of co-regulated genes. We used TF DEACoN to examine groups of transcripts regulated by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), using a transcriptional data set performed with high temporal resolution. We demonstrate the utility of this application when co-regulated genes are divided by timing of response or cell-type-specific information, which provides more information on TF/target relationships than when less defined and larger groups of co-regulated genes are used. This approach predicted TFs that may participate in ethylene-modulated root development including the TF NAM (NO APICAL MERISTEM). We used a genetic approach to show that a mutation in NAM reduces the negative regulation of lateral root development by ACC. The combination of filtering and TF DEACoN used here can be applied to any group of co-regulated genes to predict GRNs that control coordinated transcriptional responses. 
    more » « less