skip to main content


Title: Environmental heterogeneity modifies the link between personality and survival in fluctuating small mammal populations
Abstract

Despite numerous studies examining the fitness consequences of animal personalities, predictions concerning the relationship between personality and survival are not consistent with empirical observations. Theory predicts that individuals who are risky (i.e. bold, active and aggressive) should have higher rates of mortality; however, empirical evidence shows high levels of variation in behaviour–survival relationships in wild populations.

We suggest that this mismatch between predictions under theory and empirical observations results from environmental contingencies that drive heterogeneity in selection. This uncertainty may constrain any universal directional relationships between personality traits and survival. Specifically, we hypothesize that spatiotemporal fluctuations in perceived risk that arise from variability in refuge abundance and competitor density alter the relationship between personality traits and survival.

In a large‐scale manipulative experiment, we trapped four small mammal species in five subsequent years across six forest stands treated with different management practices in Maine, United States. Stands all occur within the same experimental forest but contain varying amounts of refuge and small mammal densities fluctuate over time and space. We quantified the effects of habitat structure and competitor density on the relationship between personality traits and survival to assess whether directional relationships differed depending on environmental contingencies.

In the two most abundant species, deer mice and southern red‐backed voles, risky behaviours (i.e. higher aggression and boldness) predicted apparent monthly survival probability. Mice that were more aggressive (less docile) had higher survival. Voles that were bolder (less timid) had higher survival, but in the risky forest stands only. Additionally, traits associated with stress coping and de‐arousal increased survival probability in both species at high small mammal density but decreased survival at low density. In the two less abundant study species, there was no evidence for an effect of personality traits on survival.

Our field experiment provides partial support for our hypothesis: that spatiotemporal fluctuations in refuge abundance and competitor density alter the relationship between personality traits and survival. Our findings also suggest that behaviours associated with stress coping and de‐arousal may be subject to density‐dependent selection and should be further assessed and incorporated into theory.

 
more » « less
Award ID(s):
1940525
NSF-PAR ID:
10481459
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
93
Issue:
2
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 196-207
Size(s):
["p. 196-207"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large terrestrial herbivorous mammals (LTH‐mammals) influence plant community structure by affecting seedling establishment in mature tropical forests. Many of these LTH‐mammals frequent secondary forests, but their effects on seedling establishment in them are understudied, hindering our understanding of how LTH‐mammals influence forest regeneration in human‐modified landscapes.

    We tested the hypothesis that the strength of LTH‐mammals' effects on seedling establishment depends on landscape protection, forest successional stage and plant species' traits using a manipulative field experiment in six 1‐ha sites with varying successional age and landscape protection. In each site, we established 40 seedling plot‐pairs, with one plot excluding LTH‐mammals and one not, and monitored seedlings of 116 woody species for 26 months.

    We found significant effects of LTH‐mammal exclusion on seedling survival contingent upon the protection of forests at the landscape level and forest stage. After 26 months, survival differences between LTH‐mammal exclusion and non‐exclusion treatments were greater in protected than unprotected landscapes. Additionally, plant species' traits were related to the LTH‐mammals' differential effects, as LTH‐mammals reduced the survival of seedlings of larger‐seeded species the most. Overall, LTH‐mammals' effects translated into significant shifts in community composition as seedling communities inside and outside the exclosures diverged. Moreover, lower density and higher species diversity were found as early as 12 and 18 months outside than inside exclosures.

    Synthesis and applications.Insight into the interactions between LTH‐mammals and seedling communities in forest regeneration can be instrumental in planning effective restoration efforts. We highlight the importance of landscape protection in seedling survival and the role of LTH‐mammals in promoting seedling diversity in mature forests but also in secondary successional forests. The findings suggest that conservation efforts and possibly trophic rewilding can be important approaches for preserving diversity and influencing the trajectory of secondary tropical forest succession. However, we also caution that an overabundance of LTH‐mammals may adversely impact the pace of forest succession due to their preference for large‐seeded species. Therefore, a comprehensive wildlife management plan is indispensable. Additionally, longer term studies on LTH‐mammals are necessary to understand the effects of temporal fluctuations that are undetected in short‐term studies.

     
    more » « less
  2. Abstract

    Small mammals are key scatter hoarders in forest ecosystems, acting as both seed predators and dispersers. The outcome of their interactions (i.e., predation vs. dispersal) is determined by a series of decisions made by small mammals, such as the choice of seed, whether the seed is immediately consumed or cached, and where it is cached. These decisions are influenced by a variety of factors, including the intrinsic traits of the seed, the individual personality of the scatter hoarder, and the perceived risk of predation while foraging. Furthermore, these factors may all interact to dictate the fate of the seed, with consequences for forest regeneration. Nevertheless, the ways in which perceived predation risk and personality interact to affect the seed dispersal decisions of scatter hoarders are still poorly understood. To contribute in filling this knowledge gap, we tested the hypotheses that southern red‐backed voles (Myodes gapperi), an important scatter hoarder in forest ecosystems, would exhibit personality‐mediated foraging and that predation risk would alter associations between personality and seed dispersal. We conducted a large‐scale field experiment, offering seed trays at stations with altered risk levels and recorded foraging decisions of free‐ranging voles with known personalities. We found that personality and perceived predation risk influenced decisions made by foraging voles. Specifically, docility, and boldness predicted foraging site selection, boldness predicted seed species selection and the number of seeds individuals selected, and the tendency to explore of an individual predicted whether voles would remove or consume seeds. Predation risk, mediated by the amount of cover at a site and by moon illumination, affected which foraging site individuals chose, seed species selection, and the probability of removal versus consumption. We did not find support for an interaction between personality and predation risk in predicting foraging decisions. These findings highlight the importance of scatter hoarder personality and perceived predation risk in affecting foraging decisions, with important consequences for seed dispersal and implications for altered patterns of forest regeneration in areas with different small mammal personality distributions or landscapes of fear.

     
    more » « less
  3. Abstract

    Selective logging is the primary cause of tropical forest degradation and is rapidly expanding worldwide. While the impacts of logging on species diversity and distributions are well understood, little is known about the effects of logging on animal behaviours central to individual fitness and population persistence.

    The song rate of breeding songbirds is a behavioural trait that is often positively associated with male density and used by conspecific females as an indicator of territory and male quality. Thus, contrasting logging‐induced adjustments in song rates of individual birds with population shifts may illuminate potential mechanisms underlying population distributions.

    We present a novel application of bioacoustic monitoring, integrating counts of individuals, songs and duets from single automated recording units (ARUs) withN‐mixture models, to estimate shifts in population parameters (occupancy, abundance) and singing behaviours (per‐capita song rates, per‐pair duet rates) of 32 Bornean songbird species with logging. We tested hypotheses on the relationships between adjustments in behavioural and population parameters with logging, and further tested the extent to which species traits predicted behavioural and population shifts.

    Adjustments to singing behaviour in 59 and 53% of species (57% of duetting species) were concordant with differences in occupancy and abundance respectively, such that species showing reduced populations with logging also produced fewer songs per‐capita, and vice versa. Species known to prefer undisturbed habitats and large‐bodied species showed the most negative effects of logging on singing behaviour and population distributions. Species known to exploit degraded habitats exhibited the opposite pattern. Subdued singing in logged forests by species of conservation concern suggests limited competition between territorial males in small populations and may also signal low‐quality territories.

    Synthesis and applications. We demonstrate that bioacoustic monitoring can be used to not only estimate important population parameters of occupancy and abundance across a diverse tropical songbird community, but also enables quantification of behaviours considered relevant to individual fitness, yet unobtainable with conventional methods (e.g. point counts). Bioacoustics provides a viable approach to reliable automated large‐scale monitoring of hyperdiverse tropical forest systems under logging operations and other land‐use pressures.

     
    more » « less
  4. Abstract

    To cope with uncertainty and variability in their environment, plants evolve distinct life‐history strategies by allocating different fractions of energy to growth, survival and fecundity. These differences in life‐history strategies could potentially influence ecosystem‐level dynamics, such as the sensitivity of primary production to resource fluctuations. However, linkages between evolutionary and ecosystem dynamics are not well understood.

    We used an annual plant population model to ask, when might differences in plant life‐history strategies produce differences in the sensitivity of primary production to resource fluctuations?

    Consistent with existing theory, we found that a highly variable and unpredictable environment led to the evolution of a conservative strategy characterized by relatively low and invariant germination fractions, while a variable but predictable environment favoured a riskier strategy featuring more variable germination fractions. Unexpectedly, we found that the influence of life‐history strategy on the sensitivity of production to resource fluctuations depended on competitive interactions, specifically the rate at which production saturates with the number of competing individuals. Rapid saturation overwhelms the influence of life‐history strategy, but when production saturates more slowly, the risky strategy translated to high sensitivity, whereas the conservative strategy translated to low sensitivity.

    Empirical estimates from Sonoran Desert annual plant populations indicate that production saturates relatively rapidly with the number of individuals for most species, suggesting that life‐history differences are unlikely to alter sensitivity of production to resource fluctuations, at least in this community.

    Synthesis. Our modelling results imply that research to understand the sensitivity of primary production to resource fluctuations should focus more on the intraspecific competitive interactions shaping the density–yield relationship than on the life‐history strategies that determine temporal risk‐spreading.

     
    more » « less
  5. Abstract

    Epiphytes are characterized by their ability to survive without a root connection to the ground, but many basic life‐history traits and ecological trade‐offs of this unique aerial growth habit remain largely uncharacterized. Mortality causes are still not well understood, but falling from the host tree has been suggested as a leading cause of epiphyte mortality and community dynamics. Little empirical evidence exists forwhyepiphytes do not survive when forced to become terrestrial, and few studies exist that transplant epiphytes between high‐ and low‐forest strata to test trade‐offs between thriving in canopy environments and survival in the forest understorey.

    Here, we experimentally test two hypotheses regarding the drivers of epiphyte mortality in a cloud forest of central Panama. We test whether simple contact with terrestrial soil is deleterious to epiphytes, preliminarily testing the epiphyte enemy escape hypothesis, and test the vertical niche differentiation hypothesis, wherein epiphytes are specifically adapted for microsites throughout the vertical forest strata. By monitoring survival, leaf loss and health status of 270 transplanted epiphytes for a year and a half, we pinpoint the extent to which soil contact and height of origin regulate epiphyte performance.

    We found that contact with terrestrial soil itself was detrimental to epiphytes in situ, providing some of the first empirical data to explain why falling onto the ground, versus falling into the understorey, is particularly fatal to epiphytes. However, we also found that mortality rates vary substantially among taxonomic groups and among epiphytes that originally came from different height strata.

    Synthesis. Plants that are adapted for the canopy experience a trade‐off with higher mortality when in contact with terrestrial soil. Follow‐up studies should explore the role of terrestrial soil microbes and physiological constraints as potential drivers of decreased grounded epiphyte survival.

     
    more » « less