Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms
more »
« less
From Waterfall to Collaborative: How the Course Design Process Evolves Along with Relationship Building
This paper discusses the instructional design experiences and processes shared by a multi-disciplinary group—including more than a dozen faculty, staff, and students—while developing a series of online courses on Model-based Systems Engineering (MBSE) for professional engineers, a project sponsored by the National Science Foundation. The team size, the complexity and uniqueness of the subject matter, the targeted learners, and the pre-determined research questions created a rare situation in which the team members collaborated and/or negotiated outside the realm of the traditional instructional design process. Over time the team went through two different types of instructional design processes, beginning with a waterfall-type process where the communication between the subject matter experts (SME) and the design team was somewhat limited and finally evolving to a collaborative process where the interaction between the two teams was more direct and immediate. The evolution of the design process and the dynamics between the SMEs and the design team resulted in several major design revisions implemented to improve the quality of the online courses.
more »
« less
- Award ID(s):
- 1935683
- PAR ID:
- 10481500
- Publisher / Repository:
- IUScholarWorks Journals
- Date Published:
- Journal Name:
- International Journal of Designs for Learning
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2159-449X
- Page Range / eLocation ID:
- 23 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pandemic of COVID-19 is disrupting engineering education globally, at all levels of education.While distance education is nothing new, the pandemic of COVID-19 forced instructors to rapidly move their courses online whether or not they had ever received prior training in online education. In particular, there is very little literature to guide instructors in supporting students in online engineering design or project-based courses. The purpose of this research is to examine engineering students’ report of social support in their project and design-based courses at a large research university during the move to online instruction due to COVID-19in the Spring 2020 semester and to provide recommendations for instructors teaching these types of courses online in the future.Our study is framed by social constructivism and social capital theory.We surveyed undergraduate engineering and engineering technology students(n=235) across undergraduate levels during the final week of the Spring 2019 semester.Survey questions included open-ended prompts about social supports and overall experience with the transition to online learning as well as name and resource generator questions focused on specific people and types of interactions that changed during the pandemic. We used qualitative content analysis of the open-ended responses along with comparisons of the name and resource generator to develop recommendations for instructors.Recommendations to increase students’ social supports include:facilitating informal conversations between students and between students and the instructional team, grouping students located in the same time zones in teams, facilitating co-working sessions for students, establishing weekly structure, and utilizing some synchronous components (e.g., virtual office hours).more » « less
-
While the CS education community has successfully incorporated tech-ethics assignments and modules into computing courses, we lack a defined process for instructional design to create these materials from scratch across the curriculum. To enable the development of such a process, we explore two research questions: (1) What specific instructional design challenges emerge when creating ethically-integrated assignments for CS courses? And (2) what strategies might overcome them? We address these questions using Research through Design, a method for critically examining design processes. Applying this method to our own process of creating ethics-integrated CS assignments yielded four key challenges: identifying an ethical context, maintaining a technical focus, eliciting both ethical and technical thinking from students, and making the assignment practical for the classroom. Further, the Research through Design approach revealed process-level insights for addressing these challenges, which can apply across the computing curriculum. This paper also serves as a case study of Research through Design for CS education, highlighting the importance of the instructional design process and the behind-the-scenes challenges and design decisions that go into tech-ethics materials.more » « less
-
Abstract: Disciplinary silos and large amounts of specialized information in chemistry and biology courses undermines how students can make sense of these disciplines. This manuscript reports on how mechanistic reasoning across undergraduate courses may guide students towards more enduring and meaningful science learning. This team of chemistry, biology, and education researchers engaged in conversation about core mechanisms important for student learning in each disciplinary area that would connect to core mechanisms in the other disciplinary areas. The team also engaged in design work around written mechanistic explanations assessment items in each area. Those discussions prompted awareness of disciplinary and pedagogical similarities and differences about mechanisms. Our findings report on the mechanistic reasoning we focused on in each disciplinary area and how those were embodied in the assessment prompts. We discuss implications for teaching students who are traversing different subject matter information and ways of knowing.more » « less
-
null (Ed.)Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode.more » « less
An official website of the United States government

