skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating Packet Processing in Container Overlay Networks via Packet-level Parallelism
Overlay networks serve as the de facto network virtualization technique for providing connectivity among distributed containers. Despite the flexibility in building customized private container networks, overlay networks incur significant performance loss compared to physical networks (i.e., the native). The culprit lies in the inclusion of multiple network processing stages in overlay networks, which prolongs the network processing path and overloads CPU cores. In this paper, we propose mFlow, a novel packet steering approach to parallelize the in-kernel data path of network flows. mFlow exploits packet-level parallelism in the kernel network stack by splitting the packets of the same flow into multiple micro-flows, which can be processed in parallel on multiple cores. mFlow devises new, generic mechanisms for flow splitting while preserving in-order packet delivery with little overhead. Our evaluation with both micro-benchmarks and real-world applications demonstrates the effectiveness of mFlow, with significantly improved performance – e.g., by 81% in TCP throughput and 139% in UDP compared to vanilla overlay networks. mFlow even achieved higher TCP throughput than the native (e.g., 29.8 vs. 26.6 Gbps).  more » « less
Award ID(s):
1909877 1909486
PAR ID:
10481541
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings IEEE International Parallel and Distributed Processing Symposium
ISSN:
1530-2075
ISBN:
979-8-3503-3766-2
Page Range / eLocation ID:
79 to 89
Format(s):
Medium: X
Location:
St. Petersburg, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Container networking, which provides connectivity among containers on multiple hosts, is crucial to building and scaling container-based microservices. While overlay networks are widely adopted in production systems, they cause significant performance degradation in both throughput and latency compared to physical networks. This paper seeks to understand the bottlenecks of in-kernel networking when running container overlay networks. Through profiling and code analysis, we find that a prolonged data path, due to packet transformation in overlay networks, is the culprit of performance loss. Furthermore, existing scaling techniques in the Linux network stack are ineffective for parallelizing the prolonged data path of a single network flow. We propose FALCON, a fast and balanced container networking approach to scale the packet processing pipeline in overlay networks. FALCON pipelines software interrupts associated with different network devices of a single flow on multiple cores, thereby preventing execution serialization of excessive software interrupts from overloading a single core. FALCON further supports multiple network flows by effectively multiplexing and balancing software interrupts of different flows among available cores. We have developed a prototype of FALCON in Linux. Our evaluation with both micro-benchmarks and real-world applications demonstrates the effectiveness of FALCON, with significantly improved performance (by 300% for web serving) and reduced tail latency (by 53% for data caching). 
    more » « less
  2. Advanced high-speed network cards have made packet processing in host operating systems a major performance bottleneck. The kernel network stack gives rise to various sources of overheads that limit the throughput and lengthen the per-packet processing latency. The problem is further exacerbated for short-lived, latency-sensitive network flows such as control packets, online gaming, database requests, etc. — in a highly utilized system, especially in virtualized (containerized) cloud environments, short flows can experience excessively long in-kernel queuing delays. As a consequence, recent research works propose to bypass the kernel network stack to enable lightweight, custom userspace network stacks for improved performance, but at a heavy cost of compatibility and security. In this paper, we take a different approach: We first analyze various sources of inefficiencies in the kernel network stack and propose ways to mitigate them without compromising systems compatibility, security, or flexibility. Further, we propose PRISM, a novel mechanism in the kernel network stack to differentiate incoming packets based on their performance requirements and streamline the processing stages of multi-stage packet processing pipelines (e.g., in container overlay networks). Our evaluation demonstrates that PRISM can significantly improve the latency of high-priority flows in container overly networks in the presence of heavy low-priority background traffic. 
    more » « less
  3. Data centers require high-performance and efficient networking for fast and reliable communication between applications. TCP/IP-based networking still plays a dominant role in data center networking to support a wide range of Layer-4 and Layer-7 applications, such as middleboxes and cloud-based microservices. However, traditional kernel-based TCP/IP stacks face performance challenges due to overheads such as context switching, interrupts, and copying. We present Z-stack, a high-performance userspace TCP/IP stack with a zero-copy design. Utilizing DPDK's Poll Mode Driver, Z-stack bypasses the kernel and moves packets between the NIC and the protocol stack in userspace, eliminating the overhead associated with kernel-based processing. Z-stack em-ploys polling-based packet processing that improves performance under high loads, and eliminates receive livelocks compared to interrupt-driven packet processing. With its zero-copy socket design, Z-stack eliminates copies when moving data between the user application and the protocol stack, which further minimizes latency and improves throughput. In addition, Z-stack seamlessly integrates with shared memory processing within the node, eliminating duplicate protocol processing and serializationldese-rialization overheads for intra-node communication. Z-stack uses F-stack as the starting point which integrates the proven TCP/IP stack from FreeBSD, providing a versatile solution for a variety of cloud use cases and improving performance of data center networking. 
    more » « less
  4. FlexTOE is a flexible, yet high-performance TCP offload engine (TOE) to SmartNICs. FlexTOE eliminates almost all host data-path TCP processing and is fully customizable. FlexTOE interoperates well with other TCP stacks, is robust under adverse network conditions, and supports POSIX sockets. FlexTOE focuses on data-path offload of established connections, avoiding complex control logic and packet buffering in the NIC. FlexTOE leverages fine-grained parallelization of the TCP data-path and segment reordering for high performance on wimpy SmartNIC architectures, while remaining flexible via a modular design. We compare FlexTOE on an Agilio-CX40 to host TCP stacks Linux and TAS, and to the Chelsio Terminator TOE. We find that Memcached scales up to 38% better on FlexTOE versus TAS, while saving up to 81% host CPU cycles versus Chelsio. FlexTOE provides competitive performance for RPCs, even with wimpy SmartNICs. FlexTOE cuts 99.99th-percentile RPC RTT by 3.2× and 50% versus Chelsio and TAS, respectively. FlexTOE's data-path parallelism generalizes across hardware architectures, improving single connection RPC throughput up to 2.4× on x86 and 4× on BlueField. FlexTOE supports C and XDP programs written in eBPF. It allows us to implement popular data center transport features, such as TCP tracing, packet filtering and capture, VLAN stripping, flow classification, firewalling, and connection splicing. 
    more » « less
  5. Packet scheduling determines the ordering of packets in a queuing data structure with respect to some ranking function that is mandated by a scheduling policy. It is the core component in many recent innovations to optimize network performance and utilization. Our focus in this paper is on the design and deployment of packet scheduling in soft-ware. Software schedulers have several advantages over hardware including shorter development cycle and flexibility in functionality and deployment location. We substantially improve current software packet scheduling performance,while maintaining flexibility, by exploiting underlying features of packet ranking; namely, packet ranks are integers and, at any point in time, fall within a limited range of values.We introduce Eiffel, a novel programmable packet scheduling system. At the core of Eiffel is an integer priority queue based on the Find First Set (FFS) instruction and designed to support a wide range of policies and ranking functions efficiently. As an even more efficient alternative, we also pro-pose a new approximate priority queue that can outperform FFS-based queues for some scenarios. To support flexibility,Eiffel introduces novel programming abstractions to express scheduling policies that cannot be captured by current, state-of-the-art scheduler programming models. We evaluate Eiffel in a variety of settings and in both kernel and userspace deployments. We show that it outperforms state of the art systems by 3-40x in terms of either number of cores utilized for network processing or number of flows given fixed processing capacity 
    more » « less