skip to main content

Title: The influence of carbon cycling on oxygen depletion in north-temperate lakes

Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many consequences, including reduced habitat for cold-water fish species, reduced quality of drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both allochthonous and autochthonous OC loads contribute to oxygen depletion by providing substrate for microbial respiration; however, their relative contributions to oxygen depletion across diverse lake systems remain uncertain. Lake characteristics, such as trophic state, hydrology, and morphometry, are also influential in carbon-cycling processes and may impact oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic oxygen depletion, we used a two-layer process-based lake model to simulate daily metabolism dynamics for six Wisconsin lakes over 20 years (1995–2014). Physical processes and internal metabolic processes were included in the model and were used to predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC respiration in the water column contributed the most towards hypolimnetic oxygen depletion in the eutrophic study lakes. POC water column respiration and sediment respiration had similar contributions in the mesotrophic and oligotrophic study lakes. Differences in terms of source of respiration are discussed with consideration of lake productivity and the processing and fates of organic carbon loads.

more » « less
Award ID(s):
1753657 2025982 1759865 1934633
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
5211 to 5228
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lake water clarity, phytoplankton biomass, and hypolimnetic oxygen concentration are metrics of water quality that are highly degraded in eutrophic systems. Eutrophication is linked to legacy nutrients stored in catchment soils and in lake sediments. Long lags in water quality improvement under scenarios of nutrient load reduction to lakes indicate an apparent ecosystem memory tied to the interactions between water biogeochemistry and lake sediment nutrients. To investigate how nutrient legacies and ecosystem memory control lake water quality dynamics, we coupled nutrient cycling and lake metabolism in a model to recreate long‐term water quality of a eutrophic lake (Lake Mendota, Wisconsin, USA). We modeled long‐term recovery of water quality under scenarios of nutrient load reduction and found that the rates and patterns of water quality improvement depended on changes in phosphorus (P) and organic carbon storage in the water column and sediments. Through scenarios of water quality improvement, we showed that water quality variables have distinct phases of change determined by the turnover rates of storage pools—an initial and rapid water quality improvement due to water column flushing, followed by a much longer and slower improvement as sediment P pools were slowly reduced. Water clarity, phytoplankton biomass, and hypolimnetic dissolved oxygen differed in their time responses. Water clarity and algal biomass improved within years of nutrient reductions, but hypolimnetic oxygen took decades to improve. Even with reduced catchment loading, recovery of Lake Mendota to a mesotrophic state may require decades due to nutrient legacies and long ecosystem memory.

    more » « less
  2. In lakes, ecosystem structure and processes are influenced by gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP). The rates of these metabolic processes are often controlled by resource availability, which often reflects catchment loads. Although the relationship between catchment loads and in-lake nutrient concentrations may be well defined in specific lakes, we explored how watershed vs. in-lake predictors of metabolism compare across lake types. To do this, we combined stream loads of carbon (C), nitrogen (N), and phosphorus (P) with high frequency in situ monitoring of lake metabolism and in-lake C, N, and P concentrations from 16 lakes spanning a range of latitudes (39 to 64 degrees N), inflowing stream (0 - 6 streams), and trophic status (oligotrophic to eutrophic). The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP, R, and NEP derived from those data. In addition, the data package includes in-lake and stream concentrations of dissolved organic carbon, total nitrogen, and total phosphorus and stream discharge data. The package also includes estimates of daily carbon, nitrogen and phosphorus loading to each lake derived from the stream concentrations and discharge. 
    more » « less
  3. null (Ed.)
    Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 
    more » « less
  4. Abstract

    Absence of dissolved oxygen (anoxia) in the hypolimnion of lakes can eliminate habitat for sensitive species and may induce the release of sediment‐bound phosphorus. Lake anoxia generally results from decomposition of organic matter, which is exacerbated by high nutrient loads. Total phosphorus (TP) in lakes is regulated by static aspects of the lake’s watershed, but lake TP can be readily increased by human activities. In some low‐nutrient lakes, basin morphometry may induce naturally occurring anoxia. The occurrence of natural anoxia is especially important to consider in lake water quality assessments that compare observed conditions to expected reference conditions. To investigate the occurrence of natural vs. anthropogenically influenced anoxia, we constructed a logistic regression model to calculate the probability of low‐nutrient lakes (TP < 15 µg/L) developing aerial anoxic extent ≥10% by testing the predictive potential of variables related to basin morphometry, depths of lake thermal strata, epilimnetic TP, and dissolved organic carbon (DOC). Maximum lake depth and the proportion of lake area under the top of the metalimnion were the most important variables to predict the likelihood of hypolimnetic anoxia, which correctly predicted anoxic condition in 84% of lakes (Model 1). Adding TP as a third variable to Model 1 produced a significantly improved model (Model 2) but the prediction success rate was comparable (86%). We also present a model for lakes with limited bathymetric data, which predicts anoxia with 81% accuracy based on maximum lake depth and mean thermocline depth at peak stratification. DOC was relatively low (4.3 ± 1.5 mg/L [mean ± SD]) in the study lakes and its inclusion did not improve model performance. In Model 1, lakes with an anoxic extent ≥10% of lake area had significantly higher epilimnetic TP than lakes with oxic hypolimnia, regardless of prediction category or success. Our results indicate that including TP as a variable helps refine models based on morphometry alone, but lake morphometry and stratification dynamics are the most important factors in the development of anoxic extent in low‐nutrient temperate lakes. Our approach informs studies concerned with identifying key factors that influence regime shifts in a variety of ecosystems.

    more » « less
  5. Abstract

    Globally, phytoplankton abundance is increasing in lakes as a result of climate change and land‐use change. The relative importance of climate and land‐use drivers has been examined primarily for mesotrophic and eutrophic lakes. However, oligotrophic lakes show different sensitivity to climate and land‐use drivers than mesotrophic and eutrophic lakes, necessitating further exploration of the relative contribution of the two drivers of change to increased phytoplankton abundance. Here, we investigated how air temperature (a driver related to climate change) and nutrient load (a driver related to land‐use and climate change) interact to alter water quality in oligotrophic Lake Sunapee, New Hampshire, USA. We used long‐term data and the one‐dimensional hydrodynamic General Lake Model (GLM) coupled with Aquatic EcoDyanmics (AED) modules to simulate water quality. Over the 31‐year simulation, summer median chlorophyll‐aconcentration was positively associated with summer air temperature, whereas annual maximum chlorophyll‐aconcentration was positively associated with the previous 3 years of external phosphorus load. Scenario testing demonstrated a 2°C increase in air temperature significantly increased summer median chlorophyll‐aconcentration, but not annual maximum chlorophyll‐aconcentration. For both maximum and median chlorophyll‐aconcentration, doubling external nutrient loads of total nitrogen and total phosphorus at the same time, or doubling phosphorus alone, resulted in a significant increase. This study highlights the importance of aligning lake measurements with the ecosystem metrics of interest, as maximum chlorophyll‐aconcentration may be more uniquely sensitive to nutrient load and that typical summer chlorophyll‐aconcentration may increase due to warming alone.

    more » « less