skip to main content


Title: Chronic nicotine impairs the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells in a murine model of peripheral arterial disease
Objective: Lifestyle choices such as tobacco and e-cigarette use are a risk factor for peripheral arterial disease (PAD) and may influence therapeutic outcomes. The effect of chronic nicotine exposure on the angiogenic capacity of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) was assessed in a murine model of PAD. Methods: Mice were exposed to nicotine or phosphate-buffered saline (PBS) for 28 days, followed by induction of limb ischemia and iPSC-EC transplantation. Cells were injected into the ischemic limb immediately after induction of hindlimb ischemia and again 7 days later. Limb perfusion was assessed by laser Doppler spectroscopy, and transplant cell survival was monitored for 14 days afterward using bioluminescence imaging, followed by histological analysis of angiogenesis. Results: Transplant cell retention progressively decreased over time after implantation based on bioluminescence imaging, and there were no significant differences in cell survival between mice with chronic exposure to nicotine or PBS. However, compared with mice without nicotine exposure, mice with prior nicotine exposure had had an impaired therapeutic response to iPSC-EC therapy based on decreased vascular perfusion recovery. Mice with nicotine exposure, followed by cell transplantation, had significantly lower mean perfusion ratio after 14 days (0.47 ± 0.07) compared with mice undergoing cell transplantation without prior nicotine exposure (0.79 ± 0.11). This finding was further supported by histological analysis of capillary density, in which animals with prior nicotine exposure had a lower capillary density (45.9 ± 4.7 per mm2) compared with mice without nicotine exposure (66.5 ± 8.1 per mm2). Importantly, the ischemic limbs mice exposed to nicotine without cell therapy also showed significant impairment in perfusion recovery after 14 days, compared with mice that received PBS + iPSC-EC treatment. This result suggested that mice without chronic nicotine exposure could respond to iPSC-EC implantation into the ischemic limb by inducing perfusion recovery, whereas mice with chronic nicotine exposure did not respond to iPSC-EC therapy. Conclusions: Together, these findings show that chronic nicotine exposure adversely affects the ability of iPSC-EC therapy to promote vascular perfusion recovery and angiogenesis in a murine PAD model.  more » « less
Award ID(s):
2227614
NSF-PAR ID:
10481586
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Alan Dardik, MD
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
JVS-Vascular Science
Volume:
4
Issue:
C
ISSN:
2666-3503
Page Range / eLocation ID:
100115
Subject(s) / Keyword(s):
["Angiogenesis","Endothelial cell","Induced pluripotent stem cell","Limb ischemia","Nicotine","Peripheral arterial disease."]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Background For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model.

    Methods Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days.

    Results Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613).

    Conclusion To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.

     
    more » « less
  2. Abstract

    Cardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post‐heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post‐ischemic recovery. A platelet‐inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)‐modified platelet membrane and cardiac stromal cell‐secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct‐homing ability of platelet membrane and the overexpression of PGE2receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.

     
    more » « less
  3. Abstract In transplantation, livers are transported to recipients using static cold storage (SCS), whereby livers are exposed to cold ischemic injury that contribute to post-transplant risk factors. We hypothesized that flushing organs during procurement with cold preservation solutions could influence the number of donor blood cells retained in the allograft thereby exacerbating cold ischemic injury. We present the results of rat livers that underwent 24 h SCS after being flushed with a cold University of Wisconsin (UW) solution versus room temperature (RT) lactated ringers (LR) solution. These results were compared to livers that were not flushed prior to SCS and thoroughly flushed livers without SCS. We used viability and injury metrics collected during normothermic machine perfusion (NMP) and the number of retained peripheral cells (RPCs) measured by histology to compare outcomes. Compared to the cold UW flush group, livers flushed with RT LR had lower resistance, lactate, AST, and ALT at 6 h of NMP. The number of RPCs also had significant positive correlations with resistance, lactate, and potassium levels and a negative correlation with energy charge. In conclusion, livers exposed to cold UW flush prior to SCS appear to perform worse during NMP, compared to RT LR flush. 
    more » « less
  4. Electronic cigarettes (E-cigs) generate nicotine containing aerosols for inhalation and have emerged as a popular tobacco product among adolescents and young adults, yet little is known about their health effects due to their relatively recent introduction. Few studies have assessed the long-term effects of inhaling E-cigarette smoke or vapor. Here, we show that two months of E-cigarette exposure causes suppression of bone marrow hematopoietic stem and progenitor cells (HSPCs). Specifically, the common myeloid progenitors and granulocyte-macrophage progenitors were decreased in E-cig exposed animals compared to air exposed mice. Competitive reconstitution in bone marrow transplants was not affected by two months of E-cig exposure. When air and E-cig exposed mice were challenged with an inflammatory stimulus using lipopolysaccharide (LPS), competitive fitness between the two groups was not significantly different. However, mice transplanted with bone marrow from E-cigarette plus LPS exposed mice had elevated monocytes in their peripheral blood at five months post-transplant indicating a myeloid bias similar to responses of aged hematopoietic stem cells (HSC) to an acute inflammatory challenge. We also investigated whether E-cigarette exposure enhances the selective advantage of hematopoietic cells with myeloid malignancy associated mutations. E-cigarette exposure for one month slightly increased JAK2V617F mutant cells in peripheral blood but did not have an impact on TET2−/− cells. Altogether, our findings reveal that chronic E-cigarette exposure for two months alters the bone marrow HSPC populations but does not affect HSC reconstitution in primary transplants. 
    more » « less
  5. Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2. 
    more » « less